
Debugging
in Development

with Mezmo

MEZMO EBOOK

Mezmo gives users access to the information they need to
effectively debug during development.

mezmo.com

Traditionally, logging was most commonly associated
with the post-deployment part of the software
development lifecycle, or SDLC. Logs typically served
first and foremost to help IT engineers find and
troubleshoot problems that arose in production.

Today, however, logging can help teams optimize
much more than just production-environment
application management. And indeed, logging needs
to be leveraged across all stages of the SDLC in order
to ensure the reliable, continuous delivery of software.
Developers, testing teams, and anyone else involved in
software delivery must make use of logs and log
analysis as one way to ensure the smooth flow of code
across the entire SDLC.

With that reality in mind, we’ve prepared this guide to
showcase practical approaches to log analytics at
different stages of the SDLC.

In our series of eBooks, you’ll find an explanation of
why logging across the SDLC is essential in modern
software delivery chains, as well as real-world
examples of how teams can use Mezmo to streamline
three distinct stages in the SDLC: Development, QA
and staging, and production troubleshooting. This
eBook is focused on debugging in development.

INTRODUCTION

TABLE OF CONTENTS

Introduction
Debugging in Development with Mezmo

Initial Development Environment Setup
Enrolling a New Application
Debugging with Mezmo

Tracebacks
Alerts
Boards and Screens
Time-Shifted Graphs

Next Steps with Mezmo

Conclusion

2
4

5
5
5
6
6
7

8

4D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

Developing scalable and reliable applications is a
serious business. It requires precision, accuracy,
effective teamwork, and convenient tooling. During
the software construction phase, developers employ
numerous techniques to debug and resolve issues within
their programs. One of these techniques is to leverage
monitoring and logging libraries to discover how the
application behaves in edge cases or under load.

Centralized logging gives users access to the
information that they need to effectively debug during
the development process and Mezmo makes it easy to
retain subsets of logs to meet different teams needs. For
instance, developers often need access to a true depth
of information from their logs, while SREs may be more
interested in lightweight logging levels like info and trace.
Read on to learn how the Mezmo platform empowers
users at all levels of the development process.

Initial Development
Environment Setup
The first thing you need to do is sign up with Mezmo.
The process is very smooth. From here, you can explore
their dashboard.

DEBUGGING IN
DEVELOPMENT WITH MEZMO

http://www.mazmo.com/sign-up

5D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

On the dashboard page, you have the option to pre-load
sample log data or configure an agent collector yourself
(or you can do both). If you select the sample data, you
can add applications later. Here is what the screen looks
like when the sample data is loaded:

You also have the option to view in context. When you
click this option, you can see a slice of the logs within the
particular context of source, per app, or both. View in
Context allows you to see the log lines that have lead up to
this event as well as the lines that occured after the event:

You can also filter the logs by level. This is especially
useful for eliminating most of the irrelevant noise when
debugging. You can select the filter levels from the
dropdown options at the top and apply them to the main
view:

Next, we’ll show you how to enroll a new application in the
platform to test in development.

All logs are clearly visible and itemized. When you select
a log line, you can view all of the meta field information
that was logged at that time. This is due to the automatic
parsing of log lines as they are ingested into the Mezmo
platform:

https://docs.mezmo.com/docs/context#view-in-context
https://docs.mezmo.com/docs/context#view-in-context

6D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

Enrolling a New Application
Mezmo supports ingestion from multiple sources using
the Mezmo Agent, Syslog, Code Libraries, and APIs. In
this example, we will enroll a Node.js application sourced
from this repo.

You can follow the installation process as explained
in the Readme. Then, you will need to hook the Mezmo
logger into the Winston.js instance config.

Then modify the util/logger.ts file to include the Mezmo
configuration:

$ npm install ip morgan mezmo-winston @
types/ip --save

import winston from “winston”;

import mezmoWinston from “mezmo-winston”;

import ip from “ip”;

const mezmoOptions = {

key: “b5a09b29ad1d386964c61346108fc981”,

hostname: “localhost”,

ip: ip.address(),

app: “Typescript-Node”,

env: “Production”,

indexMeta: true

};

const options: winston.LoggerOptions = {

transports: [

new winston.transports.Console({

level: process.env.NODE_ENV ===
“production” ? “error” :

“debug”

}),
new winston.transports.

File({filename: “debug.log”, level:

“debug” })

],

};

const logger = winston.
createLogger(options);

options.handleExceptions = true;

logger.add(new
mezmoWinston(mezmoOptions));

try {

throw new Error(“It’s a trap.”);

} catch (err) {

logger.error(“Log from Mezmo-
winston”, {

indexMeta: true

, meta: {

name: err.name | ‘Error’

, message: err.message

, stack: err.stack

}

});

}

if (process.env.NODE_ENV !==
“production”) {

logger.debug(“Logging initialized at
debug level”);

}

export default logger;

Then add an empty module definition for the

https://docs.mezmo.com/docs/ingestion-methods
https://github.com/microsoft/TypeScript-Node-Starter

7D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

mezmo-winston package in

/src/types/mezmo-winston.d.ts

declare module ‘mezmo-winston’;

You will need to provide the secret API key for publishing
logs in the mezmoOptions. This can be found in the Orga-
nization-> API Keys settings:

Once you have everything configured, you can start the
development server and watch the dashboard as the new
logs get populated:

$ npm run watch-debug

Navigate to localhost:3000 and make sure to enable live
monitoring in the Mezmo platform. This can be found at
the bottom right of the Mezmo dashboard.

Now you can see the new entries. If you are having
trouble finding them, you may want to filter by application
first and then select the application name.

Let’s take a look at some of the other debugging utilities
that Mezmo offers.

http://localhost:3000/

8D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

Debugging with Mezmo
Mezmo has several options and helpers for debugging
applications. Let’s explore them briefly one by one.

Tracebacks

If you check one of the logs after you have finished the
logging configuration, you will be able to see tracebacks.
That’s because an error was thrown after the logger
was configured and propagated into the platform. By
lookingat the error trace, you can clearly see that the
origin was in the /dist/util/logger.js file.

Alerts

Alerts are crucial to any technology as they give us
a heads up when something is happening within our
environment. With alerts we can get notifications
through various means with Mezmo. Out of the box
Mezmo supports alerts that can be triggered through
email, PagerDuty, and Slack to name a few. Mezmo also
supports webhooks for alerting capabilities.

How do we set up an alert in Mezmo? Alerts start when we
filter down our logs to a specific query we are interested
in. Filtering can take place through several means
within the platform, but for this example we will use
the natural language query syntax to filter down 400
response errors that are typically specific to web
applications.

Now that we have our filter in place it’s time to set up our
alerting. For that you will notice that you will see your View
change to ‘Unsaved View’ at the top of the Views page.

Clicking on the ‘Unsaved View’ will provide us options
to save the View and attach an Alert to it. If you already
had a saved View you would have the ability to attach an
Alert to that existing View from this menu.

9D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

Let’s look at what happens when we click on ‘Save as
new View’.

Within the pop up window we can give the View a name,
add it to a category, and attach an Alert to it. When we
go and attach an Alert to our View we are presented
with the screen below.

From here we can see the various alerting options that
are provided out of the box, and also see the Webhook
option as mentioned before. We will select email for our
first option.

10D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

There is a lot to take in with the above screenshot so
let’s walk through it piece by piece.

The first section is all about alerting off either the
presence or absence of log lines. Think of presence as
meaning “when I see a defined number of lines come in
during a specified period, I want to be alerted to this.”
Absence would be the opposite of that. It would mean
“I’m expecting my application to generate X number
of log lines and if it dips below that, then I want to be
alerted as there may be issues with my application
continuing to run and accept calls properly.” We can also
see when this Alert will be triggered based on our input
with the gray line that runs across the display.

Next we can create custom schedules that define
when this Alert is to be triggered. For this example we
can specify typical working hours of Monday through
Friday from 8:00 am to 5:00 pm. This is useful as we
can create alert escalations that are sent to one place
during normal operation hours and another place after
hours or on the weekends.

Alerting is crucial these days with such busy schedules,
remote working, and it helps avoid things like context
switching where you’d have to be monitoring a web UI
all the time.

Boards and Screens

After setting up Alerts, you can create your own Board
with custom widgets. For example, you can add a
widget that uses only logs from a particular application:

In this example, if you select app and Typescript-Node,
you will see the following graph:

11D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

Screens are similar to Boards, but they give you a birds-
eye view of your widgets. You can place them wherever
you like.

Time-Shifted Graphs

After you’ve written some application logic, you can
revisit the application in specific time intervals to check
if the reliability has improved. This can be accomplished
by using Time-shifted Graphs. With this feature, you can
compare log events across two different time spans. To
do so, you begin by selecting a widget from a screen.
Then, using the sidebar options, you can change the
duration field to provide valuable insights about the rate
of events:

These Graphs are excellent for development, since they
demonstrate the general tendency of the log events after
new test cases have been written or major code changes
have been implemented.

Next Steps with Mezmo
This eBook offered a brief tour of the main features of
Mezmo’s platform that cater to developers. We showed you
how to review tracebacks, view in context, use Live Tail,
and set up Mezmo Alerts for fundamental errors. Together
with Boards, Graphs, and Screens, this platform gives
developers a comprehensive set of tools for debugging
applications. You can also take it to the next level by using
Mezmo for production environments – but we’ll explore
that topic is another eBook in the series.

https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/graphs#boards
https://docs.logdna.com/docs/screens

CONCLUSION

12D EBUGGING IN D E V ELO P MEN T W I T H ME ZMO

In this eBook, we’ve shown how to leverage logs and
Mezmo to debug in development. Mezmo can help
optimize other SDLC stages including QA and staging and
production, which are discussed in the other eBooks in
this series. No matter which stage of the SDLC you help
manage, or which challenges you face, logs are one key
resource to help you do your job better. And in a world
where teams are expected to deliver new application
releases multiple times per week, or even per day,
engineers need every insight and data point available to
them to keep the delivery pipeline flowing smoothly.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@mezmo.com
support@mezmo.com
press@mezmo.com

mailto:outreach%40mezmo.com%20?subject=
mailto:support%40mezmo.com?subject=
mailto:press%40mezmo.com?subject=

