
Logging
For DevSecOps

A LogDNA eBook

INTRODUCTION

2LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

If you want to take full advantage of the agility and responsiveness of a DevOps approach, security must have an estab-
lished, important, and integrated role in your applications’ life cycles. Logging can help with that. It will ensure that you
have the visibility and transparent communication needed to detect and resolve issues quickly.

This eBook will introduce you to the fundamentals of DevSecOps and how to optimize your logging strategy for this style of
work. It covers best practices for using LogDNA for security teams and how and why you should secure your CI/CD pipeline.

What are you waiting for?
Let’s dive in.

WHAT IS DEVSECOPS

3LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

In an automated development environment, a DevOps
team is a combination of developers and operations
people who work together to speed up software
deployment and automate many repeatable procedures
that don’t need human interaction. During the
automation process, vulnerability scans and testing
can be added to ensure the safety of data and integrity
of the application. A DevSecOps team—short for
development, security, and operations—adds security
professionals to operations and development staff so
that every automated step includes the right standards
and protocols that test your applications for common
vulnerabilities. Security professionals build protocols
and standards built into your DevOps procedures from
penetration testing for vulnerabilities to protecting
infrastructure from a compromise.

How Does DevSecOps Work?

DevOps is meant to speed up development time, but
automation can open new vulnerabilities that won’t
be detected until the organization falls victim to a
cybersecurity incident. DevSecOps tools on the market
help improve the security of an application automatically
compiled and deployed to production. Many of these
tools can also be integrated into current DevOps
automation so that developers and security professionals
can be alerted to any cybersecurity issues found during a
scan without any manual overview during deployment.

In a typical development environment, developers deploy
code to a testing environment where quality assurance
(QA) runs automated and manual tests on the code.
This step is meant to fi nd bugs and other issues in the

LOGD N A EBOOK: T H E OB SERVA BIL I T Y CH A L L ENGE 44LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

application, but it’s not meant to test for vulnerabilities.
By adding security protocols into the testing and
deployment automation process, you can reduce the
number of vulnerabilities that could lead to critical data
breaches in the future. These security protocols and
standards are meant to find vulnerabilities before the
code is deployed to production. It’s referred to as “shift
left” where cybersecurity is implemented automatically
during the testing instead of scanning in production.

A typical workflow for DevSecOps is:

1.	 A developer creates and adds new code to the
application repository (e.g., Github).

2.	 The developer creates a merge request.

3.	 At this point, DevOps automation compiles the
code and then runs a series of tests.

4.	 Application code is deployed to a staging or
testing environment to test before merging
with the main branch.

5.	 DevSecOps automation uses scripted scans
to find any common vulnerabilities in the
application including configurations that
could add the risk of a compromise.

6.	 If the application passes all tests, it can then
be scheduled for deployment to production.

Automated tests check for any configuration
issues, application crashes, and bugs that could
allow an attacker to execute their own code (e.g.,

LOGD N A EBOOK: T H E OB SERVA BIL I T Y CH A L L ENGE 55LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

buffer overflow). By continually testing the application
before it gets deployed to production, developers can
offer better security and results and have fewer bug
fixes in the future.

The Benefits of DevSecOps

Vulnerabilities in production software can lead to serious
data breaches. Some of the world’s largest data breaches
start from a vulnerability in software. For example, the
Equifax data breach started with an unpatched server
application program with known vulnerabilities. Although
automated tools can’t find every vulnerability, they can
find common ones that many attackers scan for across
the Internet.

Finding vulnerabilities early in the development process
isn’t the only benefit. Having security professionals
integrated with developers and operations helps all
three collaborate better. It also helps operations
and developers better understand cybersecurity and
the many ways infrastructure and applications can
be hacked. Developers that understand software
vulnerabilities better can create code with fewer bugs
and fewer possible risks.

You could have security professionals manually code
review and scan for vulnerabilities, but this takes
potentially weeks to complete. Manual security reviews
are still necessary in some scenarios, but scanning for
common vulnerabilities can be automated to speed up
development time. Risks can be caught before code is
deployed to production, so developers can prioritize
bug fixes instead of rushing remediation for a known
issue in production.

Compliance is another benefit in having a DevSecOps
team or practice. In many compliance standards,
testing, patching and monitoring the application
are components in cybersecurity requirements.
By practicing DevSecOps, you can catch many of
the common vulnerabilities that would put your
organization out of compliance and could cost millions
of dollars in fines. With the right scanning tool, you find
unpatched software faster so that you can update it,
leaving a smaller window of opportunity for an attacker.

When security personnel work with dev and ops teams,
better communication is facilitated among all team
members. This will streamline software development,
security testing, and deployment.

Vulnerabilities in production software can lead to Vulnerabilities in production software can lead to
serious data breaches. Some of the world’s largest serious data breaches. Some of the world’s largest
data breaches start from a vulnerability in software.data breaches start from a vulnerability in software.

WHY LOGGING IS A CRITICAL
INGREDIENT IN DEVSECOPS

6LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

The conversation surrounding DevSecOps has been
happening for several years and most developers now
realize that it’s important to integrate security into the
CI/CD process. Yet what many teams are still struggling
to wrap their heads around is how they should go about
implementing DevSecOps. It’s one thing to discuss
integrating security into CI/CD, but another to fi gure out
practical approaches to doing so.

This chapter explains one key strategy for implementing
DevSecOps: logging. As we’ll see, effective logging from
across the CI/CD pipeline helps lay the foundation for
a development operation that bakes security right into
the CI/CD process and enables the type of collaboration
between all stakeholders that is essential for DevSecOps.

Logging As a Pillar of DevSecOps

No matter how you approach DevSecOps, it’s hard to
imagine an effective strategy that doesn’t include logging –
not just for production applications and the infrastructure
that hosts them but logging across the entire CI/CD

pipeline. In a variety of ways, logging reinforces the
practices and goals at the heart of DevSecOps.

Shared Visibility

You can’t practice DevSecOps if your developers, IT
engineers, and security engineers lack shared visibility into
the state of each application release and which features are
coming next (and therefore need to be secured).

You could try to gain this shared visibility by asking the
various stakeholders to collaborate manually. They could
hold meetings, chat on Slack, and so on. Yet while some
live collaboration is always helpful, you’re unlikely to be
able to achieve complete shared visibility through manual
collaboration alone.

That’s why it’s also critical to leverage logs as a single
source of truth to provide visibility into the pipeline.
When security engineers, developers, and IT engineers
have access to log data from across the pipeline,

DevSecOps emphasizes the principle of continuous DevSecOps emphasizes the principle of continuous
improvement, meaning that security operations improvement, meaning that security operations
should become more effective over time and able to should become more effective over time and able to
accommodate more and more types of threats.accommodate more and more types of threats.

7LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

they can use that data to assess its state. As a result,
they are better able to find security issues that other
stakeholders may have overlooked and prepare for
whichever security challenges may come next as they
test, deploy, and write new code.

Fast Resolution of Security Incidents

Along similar lines, when a security issue arises in
production, developers, IT engineers, and security
engineers and analysts need to react quickly and
efficiently to resolve the problem.

Here again, logging is critical for enabling fast and
coordinated responses. Waiting on manual sharing of
sensitive data can slow down reaction times. But when
every stakeholder can get the data they need from logs,
access to information is no longer the weakest link in the
security incident remediation process.

Continuous Improvement

Like DevOps, DevSecOps emphasizes the principle
of continuous improvement, meaning that security
operations should become more effective over time and
able to accommodate more and more types of threats.

It’s impossible to know how well your team continuously
improves on the DevSecOps front without log data.
Using application logs to track metrics such as the
frequency of security vulnerabilities within each
application release or the number of security bugs per

line of code enables teams to log data about the CI/
CD pipeline and security operations. Ultimately, this
increases developers’ ability to track the effectiveness
of detection and remediation efforts.

How often do you perform rollbacks in response to a
security issue? How long does it take to detect and
remediate vulnerabilities caught in the pre-deployment
stages of the pipeline? By tracking metrics like these,
teams know whether they are trending better or worse in
their ability to find and manage security issues, which is
one vital proxy for overall DevSecOps health.

Logging As a Key to DevSecOps

Again, there are many ways to implement DevSecOps,
and many resources to drive DevSecOps success. Some
will vary depending on the nature of the software delivery
pipeline. For example, a team that deploys to Kubernetes
clusters in a public cloud will rely on somewhat different
DevSecOps tools than one that deploys to on-prem VMs,
because of the security vulnerabilities and metrics
associated with each environment vary.

Virtually any organization and any type of CI/CD pipeline
requires logging for an effective DevSecOps strategy.
Logging provides shared visibility, easy access to
information, and self-assessment opportunities, all of
which teams need to make the most of DevSecOps over
the long term.

LOGDNA BEST PRACTICES
FOR SECURITY TEAMS

8LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

If you don’t already have security integrated into your
development process, some staff structure changes
are often necessary. Adding security staff to your
development team should be a painless process, but you
should build some best practices into your new structure.
These best practices will help you not only with logging
but using automation testing for bugs and adding
security scans to your process.

pros and cons. Find a security scanning solution that fi ts
well with your current code deployment and delivery tools.

In addition to this, it’s important to educate developers and
operations on the latest threats and risks. Developers who
better understand cybersecurity will keep vulnerabilities
in mind as they structure their code. When developers
understand cybersecurity, they are less likely to deploy
buggy software and deployment will be faster.

Log Meaningful Information

You can customize the information stored in logs to help
them identify exactly where and when an error occurred,
but events should be meaningful for human reviews. For
example, the following information doesn’t tell you much
about an error:

Unhandled Exception:

System.IndexOutOfRangeException: Index

was outside the bounds of the array

Best Practices

Automate Repeatable Processes

Anything that doesn’t need manual interaction should be
automated. An automation tool can be used to ensure
the software compiles without issues, scans for bugs
including ones that create vulnerabilities, and identifi es
confi guration issues. By adding security scans into the
automation process, you can cut down on delivery time
from manual code reviews.

Teams that work with a DevOps mindset use several tools
to automate software delivery, and each tool has its own

9LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

You know what happened is that a loop likely attempted
to retrieve data from an index that does not exist in an
array, but when did this happen? Where did it happen?
Who received the error?

An even better log looks like the following:

Unhandled Exception:

System.IndexOutOfRangeException: Index

was outside the bounds of the array.

Transaction ID 47492389 failed on

2021-01-28T20:04:13Z at /checkout/pay.

Logs, while important, are not the most intuitive data
types to work with. It is up to development teams to
structure raw logs in a way that makes them human
readable. LogDNA can help with these efforts by
automatically parsing most major log types, as well as
by providing templates to help build custom parsing
capabilities to meet any team’s needs.

Include Logs in Backup Routines

Logs can be parsed and used in data recovery efforts, but
administrators often forget to make them a part of the
backup process. Logs should be backed up just like any
other critical file. Should an event such as ransomware
permanently destroy or damage logs, they can then be
restored and used during forensics and data recovery.

Somewhat related, logs should also be redundant
just like data and storage. Should one logging
solution fail, the system can use the alternative until
system administrators can restore the original. This
strategy requires more storage space, but the cloud
gives organizations the ability to scale storage to
accommodate increased requirements.

Don’t Log Sensitive Information

While logs should contain enough information for audit
trails and root cause analysis, the information should
not expose sensitive data. Only specific accounts should
have access to logs, but creating events with sensitive
information adds risk of threats should an attacker
compromise security surrounding logs. Not only could
logs be used to mount additional attacks, but they could
also violate compliance rules.

In addition to always determining if data improperly
discloses personally identifiable information (PII), here is
a short list of items that should not be logged:

•	 Passwords

•	 Social security numbers

•	 API keys or secrets

APP:commerce Transaction:47492389

TIME:2021--01-24T08:38Z ENDPOINT:/

checkout/pay

Formatting logs in a structured way is beneficial for
two reasons: it makes reading easier for humans and
machines. At some point, you may need to import large
volumes of logs. In a large enterprise environment,
infrastructure and applications could create thousands
of events a day making it difficult to use them for analysis
without third-party tools. Import logs into an analytical
solution to parse data and get visual output that
represents the health of the system. For example:

In addition to the exception, the above information tells
you the transaction, date, time, and the endpoint where
the error occurred. A collection of more verbose error
information better helps root cause analysis during bug
fixes and remediation. For system administrators with
hundreds of machines to manage, more information
gives a quicker overview of the problem coupled with the
information that both locates the machine and the issue
causing errors.

Create Logs Using Structured Formatting

The above log event uses a structure that makes it easier
to import data into an analysis tool. It also structures
the event so that humans can better identify important
information when reviewing logs for specific data.

10LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

•	 Private encryption keys

•	 Credit card numbers

Centralize Log Aggregation

It’s easy to get overwhelmed with numerous log
storage locations, system monitoring solutions, and
application alerts. Centralized logging reduces much
of this overhead and eliminates many of the issues with
fragmented log storage across several systems. It also
facilitates better analytics, especially if these logs are
imported into third-party tools.

Centralized logging solutions like LogDNA also provide
easier management for backups, cybersecurity,
and monitoring. It mitigates risks of losing logs and
information and provides collaboration between several
individual resources and monitoring solutions that use
events to determine anomalies to alert administrators of
suspicious activity.

Don’t Forget Endpoint and Device Events

Any network resource that provides critical infrastructure
or adds risk to the organization should be included in log
strategies. In an enterprise environment, users could
potentially have their own devices connected to the
network, and mobile applications might connect to internal
processes using API endpoints. A component of good
event logging strategies includes collecting data from
devices where users are able to connect to the network.

By logging events on all endpoints, it helps you
understand the user experience and interpret feedback
from application activity. It also helps administrators
recognize bottlenecks and scale resources before they
create severe productivity limitations.

Limit Logs to High-Privileged User Accounts

If logs are disorganized, low-privileged users could
accidentally have access to sensitive information.
Centralizing your logs with a solution that offers Role
Based Access Control can help you manage who has
access to what information. For example, you may want

to provide high-privileged users access to read all raw
data logs but only allow standard users to see logs from
certain sources or visualization tools that provide high-
level overview of systems and applications.

Allowing unnecessary access to logs increases your attack
surface. If just one user falls victim to a phishing scam,
logs would disclose information that can be used in future
attacks. It also provides critical information about the
infrastructure of network resources and applications. An
advanced persistent threat (APT) giving attackers access
to logs could provide them with numerous data points
leading to a severe compromise and systemwide breach.

Log Successful and Failed Events

Not every anomaly results in a failed event such as an
application error or an unsuccessful authentication
attempt. To get the full picture, administrators need
several events that tell a story during investigations.
Without enough events, anomalies and suspicious
activity could be missed. For instance, a cyber-
criminal launching brute-force attacks against
account passwords would show several unsuccessful
authentication attempts, but logs would not show
suspicious activity from stolen credentials and
successful authentication after phishing attacks.

Administrators should develop a strategy for events that
should be logged. Too much information makes logs
undecipherable and wasteful of storage, but verbose
logs with useful information can be used in effective
monitoring and auditing.

Conclusion

Logging is essential in enterprises for an investigation
into cyber-events, monitoring, root cause analysis,
forensics, and overall maintenance of your systems.
Developing a strategy before implementing logging
solutions is just as important as the actual logging
solution. Before diving into logging solutions, ensure that
you put together a plan and follow best practices.

Continue on to the next chapter, where we’ll give you
practical ways to build a secure CI/CD pipeline.

FIVE PRACTICAL WAYS TO BUILD
A SECURE CI/CD PIPELINE

11LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

Given the seemingly unending stream of cyberattacks,
most developers don’t need anyone to remind them that
securing development pipelines is important. But what
eludes many teams is how you design and implement a
secure CI/CD pipeline. It’s one thing to talk about CI/CD
security and another to put it into practice.

Here’s a look at fi ve practical strategies for securing CI/CD
pipelines with that reality in mind. Although not every one
of these practices will make sense as a security strategy
for every team and pipeline, most organizations can
benefi t from these processes to bolster CI/CD security.

worth discussing. However, because most CI/CD pipeline
stages occur before applications are in production, it
can be easy to overlook security there and instead focus
on securing production environments, where the most
signifi cant risks tend to exist.

It’s true that most threats don’t touch your applications
until the deployment stage of the pipeline or later. Yet,
because the vulnerabilities that those threats seek to
exploit are often introduced in earlier stages of the
pipeline, baking security into all stages of CI/CD is critical
for delivering applications that are as secure as possible
in production.

In addition, certain risks, such as insecure management
of secrets within development environments, can creep
into the pre-deployment stages of the pipeline. That’s
another reason to secure all stages of the pipeline.

Why Secure the CI/CD Pipeline?

Before delving into practices for securing the CI/CD
pipeline, let’s explain why CI/CD security is essential.

To some developers, the importance of securing CI/
CD processes may seem so obvious that it’s not even

12LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

Five Best Practices for Securing the
CI/CD Pipeline

Now, let’s look at actual practices for keeping CI/CD
pipelines secure.

Add Security Tests to Your Testing Routine

You probably (hopefully) already run pre-production tests
on your application releases to vet them for reliability
and performance. Doing so is a best practice for ensuring
quality releases for your end-users.

But it’s equally important to include security tests within
your testing. Although you may not be accustomed to
thinking of security testing as something that you can do
alongside performance testing, the fact is that you can
extend frameworks like Selenium to perform security
tests, too. See this SQL Injection as an example.

So, if you’re not already running security tests as part
of your testing routine, now’s the time to start. After all,
performing security testing early in the CI/CD pipeline is
what “shift-left” security is all about.

Leverage Feature Flags to Manage Risks

Developers often use feature flags (or feature toggles)
to add new features to applications while mitigating the
risk that those features will introduce performance or
stability issues. By using “flags” to turn the features on
and off, developers can easily integrate them into the
codebase while retaining the ability to turn them off
quickly if necessary.

Although most developers likely don’t think of feature
flags as a security tool, they can be used for that
purpose, too. After all, new features are prime vectors for
security vulnerabilities, especially if developers haven’t
thoroughly tested them yet.

By using security flags to disable new features within
production environments until they have appropriately

vetted them, developers can reduce the risk that
those features will cause security issues. In this way,
feature flags help developers continue to improve their
applications while ensuring the associated risks are
always in check.

Use Roll Backs to Manage Production Security Bugs

No one likes a rollback, which means reverting an
application to an earlier version. Unfortunately, though,
rollbacks are a fact of life. Sometimes, the fastest
and smoothest way to solve an issue is to revert the
application to a known, stable version.

That’s true not just when performance or stability bugs
arise but also in the case of security issues. If you can
quickly roll back an insecure release, you can mitigate
the amount of harm caused by inadvertently pushing
such an application into production.

Designing for fast and reliable rollbacks from the beginning
is a best practice for overall CI/CD security. Just keep
the binaries for earlier releases on hand so that you can
redeploy them if necessary. Make sure your deployment
tools can efficiently pull one version of the app out of
production and replace it with another one quickly.

Securely Saving Secrets

It can be tempting to cut corners with secret
management in the development and testing stages of
the pipeline, even for developers who are dead serious
about securely managing passwords, SSH keys, and other
secrets in production environments.

After all, only trusted internal users would have access to
dev/test environments in theory. It wouldn’t seem like a
big deal to do something like letting multiple users share a
single account or hard-coding passwords into source code,
then removing them before deploying the application.

By leveraging best security practices, you can By leveraging best security practices, you can
minimize the risk of active vulnerabilities from minimize the risk of active vulnerabilities from
reaching production environments.reaching production environments.

13LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

The reality, of course, is that these are not best
practices from a security standpoint. How easy is
it to forget to remove a hard-coded secret before
deployment? Shared accounts are never a scalable
route, even if it’s just for dev/test.

The solution to risks like these is to apply the same
security standards to environments used during the dev/
test stages of the pipeline as you do to production. To
simplify things, use secret managers to store credentials
securely, even if it’s just for testing. It’s crucial to require
each internal user to have a separate account. And, most
critically, do not store sensitive data without enforcing
authentication and authorization rules to govern it, even
if it is only accessible from a local or private network.

Anomaly Detection Across the Pipeline

You probably already use a SIEM or similar security platform
to detect anomalies within production environments that
could be signs of a breach. That’s an essential best practice
for securing user-facing applications.

An even better best practice, however, is to detect
anomalies at all stages of the pipeline. That means
analyzing logs from dev/test environments and logs from
various CI/CD tools themselves. Any patterns in this data
representing a departure from the norm could signify
something is off – such as a misconfigured file, failure to
adhere to internal governance rules, or a security issue

within upstream software (like open source libraries) that
you incorporate into your application.

LogDNA provides a centralized place for all of your log
data. Logs are the single source of truth for everything
that is happening in your environment. So while SREs
use logs to troubleshoot issues that are happening in
production, developers might use them to understand
how their code is performing before the pre-commit.

The more data you scan for anomalies and the more
representative that information is of the entire
pipeline, the greater your ability to detect and address
vulnerabilities before the software is in production.

Securing the Entire Pipeline

You can’t secure your application without securing your
CI/CD pipeline. Although most real-world threats don’t
materialize until the software is already in production,
the goal of developers should be to leverage practices
that minimize the risk of active vulnerabilities reaching
production environments in the first place. The earlier
the better. These actions consist of security tests,
feature flags, and across-the-pipeline anomaly detection.
The more secure your CI/CD pipeline is, the fewer
security issues you’ll have to contend with once your
code is in production.

CONCLUSION

14LOGGING F OR D E VSEC O P S: A LOGD N A EBOOK

Throughout this eBook, you’ve learned about the
importance of DevSecOps, logging, and the intertwining
of them both. You’ve also learned a few tips from us to
start you on your journey or if you’ve already made the
fi rst steps, help you along the way.

It would be an overstatement to say that logging and
log management are the only essential ingredients
in DevSecOps.

A lot of other factors come into play in order to achieve
a successful DevSecOps culture, such as sustainable

delivery and having scalable governance models.
However, logging and log management are often
unappreciated yet critical facets of DevSecOps. You can’t
have DevSecOps if you don’t manage logs effectively.

So the question remains. Are you looking for a way to put
DevSecOps principles into practice? If so, your logging
strategy is a good place to start.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@logdna.com
support@logdna.com

press@logdna.com

