
LOGGING IN
THE AGE OF DEVOPS
FROM MONOLITH TO MICROSERVICES AND BEYOND

MEZMO EBOOK

Logging in the age of DevOps is more critical than ever. It's key to maintaining visibility and security
in today's fast-moving, highly dynamic environments.

2 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Logging for Monoliths vs. Logging for Microservices

Microservices vs. Monolithic Logging

Best Practices for Microservices Logging

Aggregate and analyze all microservices log data

Make sure log aggregation is truly centralized

Use custom identifiers

Use custom parsing

Log to persistent storage

Chapter Summary

What the Cloud-Native Revolution Means for Log Management

What Makes Cloud-Native Logging Different

More logs

More types of logs

Diverse logging architectures

Non-persistent log storage

Best Practices for Cloud-Native Log Management

Unify log collection and aggregation

Adopt a flexible log management solution

Collect logs in real time

Use custom log parsers

Chapter Summary

4

4

5

5

5

6

6

6

6

7

7

7

8

8

8

9

9

9

9

10

10

TABLE OF CONTENTS

3ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

How Logging and DevSecOps Go Hand-In-Hand

What is DevSecOps?

What it Takes to “Do” DevSecOps

Logging and DevSecOps

Communication between Development, Operations and Security

Security visibility

Chapter Summary

Looking Forward with Legacy Application Logging

Why is Modernizing an Application Important?

Decreased maintenance leads to increased innovation

Improved system security and compliance

Improved development processes lead to an increased speed of delivery

How Can Logging in Your Legacy Application Help with Modernization?

Identifying system components subject to frequent errors and

performance problems

Identifying areas in need of an overhaul in user experience

Chapter summary: Choosing the Right Logging Solution

Conclusion

11

11

11

12

12

12

13

14

14

14

14

15

15

15

15

16

17

4 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

INTRODUCTION

Logging in today’s fast-moving,
highly dynamic environments.
If you work in development, IT engineering, or a
similar role, you’re certainly familiar with logging.
For decades, logs and log data have been part and
parcel of virtually every type of workflow and
process in the IT industry.

The past several years, however, have witnessed a
series of significant disruptions in the way
workloads are deployed. These changes have
brought with them important consequences for logs
and logging.

One major innovation has been the widespread
adoption of a DevOps culture, an approach to
software delivery and management that
emphasizes seamless collaboration between IT
teams and developers. Using DevOps-oriented
practices effectively requires leveraging log data in
new ways in order to provide developers and IT
engineers alike with visibility into the workloads
that they collaboratively deliver and manage. This is
all the more true when other stakeholders, such as
security engineers, are integrated into the DevOps
process.

At the same time, the way workloads are structured
has changed. Many applications are now deployed
as microservices with the result that there are more
logs, more log data, and more varied logging
structures to contend with. Microservices have also
necessitated a rethinking of the way organizations
handle logs.

5ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

The advent of cloud-native computing has also
impacted logs and logging in profound ways. The
cloud-native trend has increased the number and
types of logs that organizations now need to manage.
It has introduced additional challenges, such as a
lack of persistent storage in some cases for the
locations where log data is natively generated.

To make matters more complicated, legacy
applications and software delivery practices persist
among all of this change. That means organizations
must not only adapt to the log management
requirements of new types of workloads and
architectures but must do so while continuing to
manage logs effectively for legacy applications.

In short, logging in the age of DevOps has become
harder than ever. And, it is more critical than ever
because it is key to maintaining visibility and security
in today’s fast-moving, highly dynamic environments.

With these needs and challenges in mind, Mezmo has
prepared this eBook to offer guidance on how best to
approach the log management challenges that teams
face today. It covers logging best practices for
DevOps-oriented teams, microservices
architectures, and cloud-native environments, while
also explaining how to manage logs effectively for
the legacy applications that many teams still deploy.

6 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Let’s start with one of the first logging conundrums
that teams must understand when they begin
migrating to modern application architectures: How
logging for monolithic applications is different from
logging for microservices.

At first glance, microservices logging may seem
simple. You just take the same logging principles
you’ve always followed for monoliths and apply them
to each microservice in your application, right?

Well, no. The differences between microservices
and monolithic architectures amount to much more
than a difference in the number of services
involved. To create and manage logs in a way that
provides true visibility into a microservices
environment, developers and IT engineers must
adhere to a different set of practices than they
would use when logging for a monolith.

Microservices vs. Monolithic
Logging

No matter how exactly you define a microservices
architecture (a topic about which there is some
debate), there are several distinctions between
monolithic and microservices architectures that
have critical ramifications for logging.

The first and most obvious is that, in a
microservices app, there are more individual

LOGGING FOR
MONOLITHS VS. LOGGING
FOR MICROSERVICES

https://dzone.com/articles/microservice-definition-and-architecture
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

7ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

“To create and manage logs in a way that
provides true visibility into a

microservices environment, developers
and IT engineers must adhere to a

different set of practices than they would
use when logging for a monolith”

microservice logs data inside of a container or a
serverless function execution environment, the logs
will disappear when the container or serverless
function shuts down unless they are moved
somewhere else beforehand.

For all of these reasons, it would be simplistic and
ineffective to approach microservices logging in the
same way as logging for a monolith.

components of the application. By extension, there
are more logs because each microservice typically
generates its own set of log data.

Another, perhaps less obvious, difference is that in
a microservices architecture the various
microservices interact constantly in ways that make
them dependent on each other. From the
perspective of logging, it ’s not enough to have logs
that only provide visibility into the state of each
individual microservice. You also need to use logs to
understand how microservices are interacting and
to trace the web of dependencies that link
microservices together.

A third challenge with microservices logging is that
the scope and types of logs generated by each
microservice tend not to be the same. Each
microservice performs a different function, and
some do more work or handle more requests than
others. As a result, it usually doesn’t make sense for
developers to try to have each microservice
structure its logs in a uniform way. Instead, log
format and structure are tailored to each
microservice, leading to less consistency from the
perspective of log management.

The distributed nature of microservices creates an
additional challenge. Whereas a monolithic
application is typically hosted in just one place—a
single server or a single cloud,—microservices
applications can be distributed across a variety of
locations. The ability to distribute applications in
this way is part of the reason why microservices are
so advantageous. However, this ability also creates
complexity with logging because different
microservices store their logs in different places.

In many cases, microservices are deployed using
technologies like containers or serverless
functions, which lack built-in persistent storage. If a

8 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Make sure log aggregation is
truly centralized

Use custom parsing

It ’s not enough to aggregate some log data into one
place (such as a public cloud vendor’s log manager,
like CloudWatch) and aggregate other data
somewhere else (like a third-party log management
tool). Although this approach may seem like the way
to go if some microservices run in one location and
others run somewhere else, you need all of your log
data in a single location if you want to analyze and
store it effectively.

Because microservices logs are often structured in
multiple ways, trying to search through all of your
logging data using generic regexes is typically not
very effective. Instead, consider writing custom
parsing rules that govern how your log analytics tool
identifies relevant trends within log data, even if
you are working with logs of varying types or
structures.

Ensure that data logged by microservices includes
unique identifiers, such as the name of the
microservice or a unique ID for each type of
message it generates. This information is
immensely valuable for helping to contextualize and
trace interactions between microservices. If you
don’t have unique identifiers, it is much harder to
determine which information within your
aggregated logs comes from which microservice.

In certain cases, you may need to implement unique
logging identifiers within the microservices’ source
code. However, you can also use logging agent
features, such as tagging, to associate identifiers to
log data without having to modify source code.

Use custom identifiers

Aggregate and analyze all
microservices log data

Aggregate all of the log data from an application’s
various microservices and analyze it in one place to
gain holistic visibility into the application. Knowing
information such as the startup time or requests
handled by an individual microservice is not very
useful for maintaining overall application
performance and availability if you don’t know how
that one service’s metrics correlate with those of
the rest of the application.

Best Practices for
Microservices Logging
Fortunately, the complexity and challenges posed
by microservices logging can be tamed.
The following best practices help ensure that all of
the log data generated by microservices can be
leveraged effectively to provide true visibility into
these applications.

9ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

As noted above, microservices often run inside
infrastructure—like a container—that lacks
persistent storage. A basic and essential best
practice in that case is to ensure that log data is
written to somewhere where it will be stored
persistently and remain available if the container
shuts down.

You could do this by modifying source code or your
container configurations to ensure that the logs are
written to an external storage volume. An easier
approach, however, is to run a logging agent that
will collect data from the containerized
microservice in real time and aggregate it within a
reliable storage location.

This way, you kill two birds with one stone (or
logging agent, as it were): You aggregate logs and
move log data to persistent storage, all in one step.

Chapter Summary
Logging for microservices is an entirely different
game than logging for monoliths. Not only is there
more log data and more logs in a microservices
environment, but the lack of uniformity in log type
and structure, the distributed nature of
microservices hosting environments, and the
complex interdependence of microservices mean
that logs for microservices applications must be
managed in a more sophisticated and streamlined
way.

Log to persistent storage

10 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Once upon a time, log management was relatively
straightforward. The volume, types, and structures
of logs were simple and manageable.

However, over the past few years, all of this
simplicity has gone out the window. Thanks to the
shift toward cloud-native technologies—such as
loosely coupled services, microservices
architectures, and technologies like containers and
Kubernetes—the log management strategies of the
past no longer suffice. Managing logs successfully in
a cloud-native world requires fundamental changes
to the way logs are aggregated, analyzed, and more.

Here’s how the cloud-native revolution has changed
the nature of log management and what IT and
DevOps teams can do to continue managing logs
effectively.

What Makes Cloud-Native
Logging Different
At first glance, log management in a cloud-native
world may not seem that different from conventional
logging. Cloud-native infrastructure and
applications still generate logs, and the fundamental
steps of the log management process—collection,
aggregation, analysis, rotation—still apply.

Yet, if you actually start trying to monitor a cloud-
native environment, it quickly becomes clear that
managing logs efficiently and effectively is much
more difficult. There are four main reasons why.

WHAT THE CLOUD-NATIVE
REVOLUTION MEANS FOR
LOG MANAGEMENT

11ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

More logs

First and foremost, there are simply more logs to
contend with.

Before the cloud-native era, most applications were
monoliths that ran on individual servers. Each
application typically generated only one log (if it
even created its own log at all. Sometimes,
applications logged data to syslog instead). Each
server also typically generated only a handful of
logs, with syslog and auth being the main ones.
Thus, to manage logs for the entire environment,
you only had a few logs to contend with.

In cloud-native environments, in contrast, you
typically work with microservices architectures
where there could be a dozen or more different
services running, each providing a different piece of
the functionality required to compose the entire
application. Every microservice may generate its
own log.

Not only that, but there are more layers of
infrastructure, too, and, by extension, more logs.
You have not only the underlying host servers and
the logs they generate, but also logs created by the
abstraction layer—such as Docker or Kubernetes or
both, depending on how you use them—that sits
between the application and the underlying
infrastructure.

In short, the shift to cloud-native means that IT
teams have gone from contending with a handful of
separate logs for each application they support to a
dozen or more.

12 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

“The variety of logs make it harder to parse all logs at once
using regex matching or other types of generic queries.”

More types of logs

Diverse logging architectures Non-persistent log storage

Not only are there more logs overall, but there are
more types of logs. Instead of just having server
logs and application logs, you have logs for your
cloud infrastructure, logs for Kubernetes or Docker,
authentication logs, logs for both Windows and
Linux (because it’s more common now to be using
both types of operating systems in the same shop),
to name a few.

This variety adds complexity not only because there
are more distinct types of log data to manage, but
also because these various types of logs are often
formatted in different ways. As a result, it is harder
to parse all logs at once using regex matching or
other types of generic queries.

Kubernetes is a prime example. Kubernetes
provides some built-in functionality for collecting
logs at the node level; the exact way that it does
that collection depends on environment variables.
For example, it logs to journald on systems with
systemd installed but otherwise writes directly to
log files inside /var/log.

To make matters more complicated, Kubernetes has
no native support for cluster-level logging although,
again, multiple approaches are possible. You could
use a logging agent running on each Kubernetes
node to generate log data for the cluster, or you
could run a logging agent in a sidecar container.
Alternatively, you could try to generate cluster-wide
log data directly from the application, provided your
cluster architecture and application make this
practical.

A final challenge in cloud-native logging arises
from the fact that some cloud-native
applications lack persistent data storage.
Containers are the prime example.

Along with the increase in the number and types of
logs has come more complexity and variation with
regard to the way log data is actually exposed within
application environments.

13ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

When a container instance stops running, all data
stored inside the container is permanently
destroyed. Thus, if log data was stored inside the
container (which it often is, by default), it will
disappear along with the container. Because
containers are ephemeral, with instances halting
and being removed with new ones spinning up
automatically, it ’s not as if admins are asked
whether they want to save log data before a
container shuts down. It will just shut down and be
removed, taking your log data with it unless you have
moved that data somewhere else beforehand.

This transience may be okay if you only care about
working with log data in real time. However, if you
need to keep historical logs available for a certain
period of time, losing log data when containers stop
running is not acceptable.

14 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Unify log collection and
aggregation

Adopt a flexible log
management solution

Best Practices for
Cloud-Native Log Management
To respond to these challenges of logging in a
cloud-native world, teams can use these guidelines.

With so many different types of log formats and
architectures to support and remember, trying to
manage the logs for each system separately is not
feasible.

Instead, implement a unified, centralized log
management solution that automatically collects
data from all parts of your environment and
aggregates it into a single location.

Your log management tools and processes should
be able to support any type of environment without
you having to reconfigure the environment.

If you have, for example, one Kubernetes cluster
that exposes log data in one way and a second
cluster that logs in a different way, you should be
able to collect and analyze logs from both clusters
without having to change the way either cluster
deals with logs. Likewise, if you have one
application running on one public cloud and another
one on a different cloud, you shouldn’t have to
modify the default logging behavior of either cloud
environment in order to manage its logs from a
central location.

15ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

Use custom log parsers

Collect logs in real time

Instead of ignoring logs that are structured in ways
that conventional analytics tools can’t support, take
advantage of custom log parsers to work with data
in any format. That way, you don’t risk missing out
on important insights from non-standard logs.

Chapter Summary
Cloud-native log management is fundamentally
different from managing log data for conventional,
monolithic applications. It ’s not just that the scale
of log data has increased (though it has), but also
that there is much greater diversity when it comes
to the way log data is recorded, structured, and
exposed. Managing logs effectively in the face of
these challenges requires a log management
solution that fully centralizes and unifies log data
from any and all systems that you support, while
also providing the power to derive insights from
non-standard log types.

One way to ensure that logs from environments
without persistent storage don’t disappear is to
collect log data in real time and aggregate it in an
independent location. That way, log data is
preserved in a persistent log manager as soon as it
is born and will remain available even if the
container shuts down.

This approach is preferable to trying to collect log
data only at fixed periods from inside containers,
which leaves you at risk of missing some logs if the
containers shut down earlier than you expected.

https://docs.mezmo.com/docs/custom-parsing

16 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

HOW LOGGING AND
DEVSECOPS GO
HAND-IN-HAND

Today, many organizations are thinking not just in
DevOps terms, but also in DevSecOps terms, a
phrase that indicates a mental shift to extend
DevOps principles and practices into the realm of
security. And while logging is probably not the first
item to come to mind when most of us think about
DevSecOps, it should be.

Logging and log management play a critical role in
helping to put DevSecOps principles into practice by
ensuring that developers, IT operations staff, and
security teams have the visibility and
communication pipelines they need to prioritize
security at all stages of the DevOps delivery cycle.

What is DevSecOps?
DevSecOps is a cultural shift that means making
security part and parcel of all DevOps practices,
from code development and integration at the start
of the application delivery pipeline through to
deployment and management at the end.

The term has become popular as a way to emphasize
that a DevOps mindset should not just involve better
integration between development and IT processes
(which is the classic definition of DevOps) but should
extend to security, too. Otherwise, the argument
goes, security exists in a silo and ends up becoming
an afterthought when code is written, tested, and
deployed.

https://theagileadmin.com/what-is-devops/

17ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

What it Takes to “Do” DevSecOps
Like other DevOps principles, DevSecOps is a philosophy rather than a specific set of practices.
There are many paths that teams can take to “do” DevSecOps, and many tools that will help them
get there. Thus, it would be wrong to think of DevSecOps as something that you achieve by
implementing a certain process or adopting a certain tool.

At the core of any healthy DevSecOps strategy, however, are two key principles:

Seamless communication between the development, operations, and security
teams. It ’s only by being able to communicate and collaborate that each of these
groups can work together to improve the overall security of DevOps processes.

Across-the-board visibility into security considerations. This means that security
issues, or potential security issues, that exist at any stage of the application
delivery cycle must be easy to identify. It also means that all stakeholders—
developers, IT engineers, the security team, and anyone else—have constant
visibility into the state of the delivery cycle and can, therefore, identify and
respond to security concerns readily.

1

2

https://devops.com/devops-and-security-the-path-to-devsecops/

18 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Logging and DevSecOps

Logging and log management play an essential role
in achieving both of these principles and, by exten-
sion, in enabling a DevSecOps mindset.

Communication between
Development, Operations, and
Security

Logs also form a common foundation for providing
visibility into potential security considerations
related to software. No matter which stage of the
application delivery cycle you are working with, you
can generate and analyze log data to help identify
security risks.

When it comes to communication between different
teams about security, log data functions as a single
source of truth that all parties can use to identify,
respond to, and discuss security considerations.

Whether you’re a developer, an IT engineer, or a
security engineer, you know how to work with log
data. In fact, logging is one of the few tools and
skillsets that all three of these disciplines share.

Thus, by using logs as the basis for communication,
it becomes practical to operationalize DevSecOps.
If a security engineer wants to discuss a potential

Security visibility

vulnerability with development or operations, he or
she can point to log data to identify the event and
convey relevant information. This technique is much
more effective than attempting to have developers
or operations staff work through security tools they
are not accustomed to using.

It’s important to note that simply collecting logs is
not enough to facilitate DevSecOps. Managing the
logs effectively—in a way that allows all
stakeholders to see relevant trends, contextualize
events, and pull out the information they need to
perform a certain task—is also essential.

“You can’t work in a DevSecOps world if you don’t manage
logs effectively. If you are wondering how to put DevSecOps
principles into practice, your logging strategy is a good
place to start.”

19ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

Logs from a CI server could be used to identify
anomalous code integrations that merit further
investigation. Logs from application tests and
builds provide an opportunity to evaluate how
software runs, and find potential vulnerabilities,
before deployment. Logs from production
environments, of course, offer the greatest degree
of visibility into security issues that may arise once
the latest version of an application is up and
running.

In this way, logs make it possible to understand the
security context of software at all stages of the
DevOps pipeline, which is exactly what DevSecOps
is all about.

Here again, of course, merely generating logs is not
enough. It ’s also critical to have an efficient log
management strategy in place so that log data from
the various stages of the pipeline can be aggregated
and analyzed effectively.

Chapter Summary
It would be an overstatement to say that logging and
log management are the only essential ingredients
in a DevSecOps team. A lot of other factors come
into play in order to achieve a successful DevSec-
Ops culture, such as obtaining buy-in for security by
all members of the IT organization.

However, logging and log management are a critical
facet of DevSecOps, and ones that have perhaps
been underappreciated. You can’t work in a DevSec-
Ops world if you don’t manage logs effectively. If you
are wondering how to put DevSecOps principles into
practice, your logging strategy is a good place to
start.

20 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

As the introduction noted, not all workloads have
been modernized. Legacy applications remain
widespread, too, and must now often be maintained
alongside modern ones.

For that reason, teams should strive to develop a log
management strategy that works equally well for
legacy and modern apps. Ideally, their strategy will
reinforce plans for evolving legacy apps over time
and moving toward full modernization – even if they
lack the development resources to achieve that goal
overnight.
After all, any application that stands the test of time
will reach a point in which it needs to be modernized,
either partially or in full, if it is to remain a viable
solution for its end users. The trick is to decide how
to revamp the application so that the modernization
effort provides great value to both the organization
and end users. Log analysis and the use of a robust
log analysis platform can have a large impact on a
business’s plan for modernizing an application.

Why is Modernizing an
Application Important?
There are a host of important reasons for
modernizing an application. These reasons revolve
around improving application quality and reliability
and revamping potentially outdated development
processes used within the team. In doing so, an
organization can streamline portions of the

LOOKING FORWARD WITH
LEGACY APPLICATION
LOGGING

21ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

6 https://aws.amazon.com/compliance/shared-responsibility-model/

Decreased maintenance leads
to increased innovation

Improved system security
and compliance

Application modernization typically involves moving
off of older, antiquated frameworks and
technologies and onto newer ones that experience
fewer failures and are easier to support. This move
results in a reduction in the amount of time that
development and operations teams need to spend in
order to keep the system up and running. This
streamlining, in turn, frees up resources that the
business can then leverage to refine functionality,
thereby empowering the team to provide greater
value to their end users.

It’s no secret that outdated code, frameworks, and
technologies are more likely to be susceptible to
both security vulnerabilities and compliance issues.
For organizations collecting personal and financial
information about their customers, modernizing an
application represents an opportunity to build with
security and compliance in mind by baking it into
their application. Rebuilding that application
provides developers and operations teams with the
opportunity to improve adherence to industry
standards for compliance and to utilize libraries,
frameworks, and tools that provide an inherently
increased level of awareness of security needs than
those developed years ago.
This shift is representative of a more complete

application development process and provide
themselves with the opportunity to improve and
expand their business, managing logs efficiently and
effectively is much more difficult. There are four
main reasons why.

22 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

Identifying system components
subject to frequent errors and
performance problems

solution than identifying and reacting to security
and compliance shortfalls in a legacy system or
attempting to bolt fixes onto an outdated codebase
or infrastructure.

How Can Logging in Your
Legacy Application Help with
Modernization?
So, keeping the advantages of application
modernization in mind, how can logging in a legacy
system help drive the modernization process? A few
uses for legacy application log data and the
resulting analysis of this data come to mind.

We all know that log analysis is of great use in
determining the contributing factors of specific
issues occurring within an application. However, it
can also be useful when attempting to analyze the
bigger picture.

Improved development
processes lead to an increased
speed of delivery

Modernizing an application provides the opportunity
for teams not only to upgrade their legacy
applications but also to make upgrades to their
development processes, undoubtedly leading to an
increased speed of delivery. Modernization projects
represent a natural entry point for the adoption of
modern development practices, including
continuous integration, continuous delivery,
automated and continuous testing, and more.
These practices help organizations deliver changes
to their applications in less time and with an
increased level of quality and stability.

23ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

Identifying areas in need of an
overhaul in user experience

One aspect lending insight to the bigger picture lies
in identifying which components of a system are
experiencing high error rates or great levels of
latency. In the event of a gradual migration to a
newer system, such insights can provide
development organizations with the information
they need to choose which components should be
given priority in the modernization effort. Focusing
on those elements that are contributing to overall
application quality issues such as frequent failures
or excessive slowness will help the organization
increase the reliability of the product in the fastest
manner possible.

Just because a legacy system component isn’t
experiencing obvious shortfalls such as
performance issues or frequent runtime errors
doesn’t necessarily mean it shouldn’t be an area of
focus in an application redesign.
For instance, consider the case of modernizing an
application designed for streaming music. In this
case, there could exist a feature that allows for
building playlists to share with friends. If users
frequently begin the process of creating a playlist
but fail to follow through, it ’s possible this feature
could be due for an overhaul to improve
intuitiveness and overall user experience.

Log analysis can be utilized to provide insights into
user behavior, enabling development organizations
to identify features with room for improvement in
these areas and thereby helping organizations make
decisions about which components of a legacy
system require greater attention within the
modernization effort.

Chapter summary: Choosing
the Right Logging Solution
There are several paths available to those teams
modernizing legacy systems. There is the all-or-
nothing approach of rebuilding an entire system at
once, and there is the gradual modernization
technique where the system is overhauled on a
component-by-component basis.

With the latter, it will prove extremely valuable to
choose a log analysis platform with the ability to
monitor the remaining legacy components in
conjunction with those that have been moved. By
ensuring these logs are available in a centralized
location, developers and incident response
personnel will have all relevant information at their
fingertips. This ability goes a long way in
empowering efficient and effective incident
response processes.

“By ensuring logs are available in a centralized location,
developers and incident response personnel will have all
relevant information at their fingertips.”

24 ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VO P S

The nature of workloads, as well as the entire approach to software delivery
and management, have changed. So, too, have the log management
strategies that yield the most effective results for today’s dynamic, large-
scale application environments.

Thriving in the face of these challenges—while, at the same time, managing
logs effectively for the legacy applications that remain a part of many
organizations’ environments—requires a new approach to log management.

Mezmo’s suite of flexible, microservices-ready log management tools
empowers teams to achieve this goal. By enabling organizations of any
size to manage, analyze, and derive value from logs no matter how they are
structured, which programming languages generated them, or which part
of an application they relate to, Mezmo provides a holistic log management
solution for the age of DevOps.

See for yourself with a free, fourteen-day Mezmo trial.

CONCLUSION

https://www.mezmo.com/sign-up/?gclid=EAIaIQobChMIk5eHu5Ox6QIVSr3ACh0RRgusEAAYASAAEgI8G_D_BwE

25ME ZMO EBOOK: LOGGING IN T H E AGE OF D E VOP S

ABOUT MEZMO

Mezmo is a modern log management solution that empowers DevOps teams with
the insights that they need to develop and debug their applications with ease.
Users can get up and running in minutes, see logs from any source instantly in
Live Tail, and effortlessly search them with natural language. Custom Parsing,
Views, and Alerts put users in control of their data every step of the way.

To learn more, visit mezmo.com and start your free trial today.

http://mezmo.com

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@mezmo.com
support@mezmo.com
press@mezmo.com

mailto:outreach%40mezmo.com?subject=
mailto:support%40mezmo.com%20?subject=
mailto:press%40mezmo.com%20?subject=

