
LOGDNA EBOOK

The eBook will cover how to use LogDNA to
debug in development, test during QA and staging,

and troubleshoot in production.

logdna.com

Guide to Using LogDNA
Across the Software

Development Lifecycle

Traditionally, logging was most commonly associated
with the post-deployment part of the software
development lifecycle, or SDLC. Logs typically served
first and foremost to help IT engineers find and
troubleshoot problems that arose in production.

Today, however, logging can help teams optimize
much more than just production-environment
application management. And indeed, logging needs
to be leveraged across all stages of the SDLC in order
to ensure the reliable, continuous delivery of software.
Developers, testing teams, and anyone else involved in
software delivery must make use of logs and log
analysis as one way to ensure the smooth flow of code
across the entire SDLC.

With that reality in mind, we’ve prepared this guide to
showcase practical approaches to log analytics at
different stages of the SDLC. In the following chapters,
you’ll find an explanation of why logging across the
SDLC is essential in modern software delivery chains,

as well as real-world examples of how teams can use
LogDNA to streamline three distinct stages in the
SDLC: Development, QA and staging, and production
troubleshooting.

INTRODUCTION

Introduction

The Importance of Logging across the SDLC

 Logging Improves Software Maintainability
Logging Helps with Migration Phases

Logging Deprecated Features
Logging Feature Flag Usage

Logging Helps with Managing New Work vs Technical Debt
Next Steps with Logging

Debugging in Development with LogDNA
Initial Development Environment Setup
Enrolling a New Application
Debugging with LogDNA

Tracebacks
Alerts
Boards and Screens
Time-Shifted Graphs

Next Steps with LogDNA

Using LogDNA for QA and Staging
Setting Up A Staging Environment
Enrolling a New Application
Testing the Environment with LogDNA

Alerts

2

4

5
5
5
6
6
7

8
8
10
12
12
12
14
15
15

16
16
17
19
20

TABLE OF CONTENTS

Sharing Views with Developers
How to Exclude Log Lines Before and After Ingestion
Examining Automated Tests for Failures

Next Steps

Using LogDNA to Troubleshoot In Production
Detection and Recovery
The Complexity of Modern Systems

Networking Problems
Performance Issues

Why Centralized Log Management is Essential
Comprehensive Alerting
Root Cause Analysis

Conclusion

22
22
23
23

24
25
25
25
25
25
26
26

27

4GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

matters revolves around how to include logging in a
way that maximizes its value not only in delivering
the platform successfully but also in maintaining it
throughout its lifetime.

Keep reading for an explanation of some of the most
compelling reasons why logging matters throughout
the SDLC.

There are multiple phases in the software development
process that need to be completed before the software
can be released into production. Those phases, which
are typically iterative, are part of what we call the
software development life cycle, or SDLC. During this
cycle, developers and software analysts also aim to
satisfy nonfunctional requirements like reliability,
maintainability, and performance.

One of the most critical services that developers can
include in their applications is logging. Logging is a way
to expose contextual information along with the main
application runtime. When developers distribute those
applications in a live environment, they will collect and
store logs, either locally or in an external service.

There’s usually not much debate about whether or not
to include logging, because almost everyone expects
it to be included by default. The discussion that really

THE IMPORTANCE OF
LOGGING ACROSS THE SDLC

5GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Logging Improves
Software Maintainability
Developers use logs to perform several crucial tasks like
debugging, load testing, and performance testing. They
almost always capture log errors and fatal exceptions
(because those are usually the most important) and then
export them to external services like LogDNA for further
processing.

However, if you only log errors or fatal exceptions,
you can miss significant information. To enable more
extensive logging, you can utilize code libraries, which
offer a proper set of methods and filters to configure the
log information based on a level of sensitivity. Developers
can then preconfigure apps to collect or store logs with a
specific format and log level.

Utilizing different log levels in different places
throughout the codebase allows developers to handle
two important things. First, it allows them to configure
the sensitivity of the information that gets stored to
match the parameters of what they aim to capture.
For example, they can include stack traces or detailed
context using debug or trace log levels. Second, it
allows developers to configure the sensitivity of the
log collectors or external services to respond to events
that satisfy specific criteria and then forward them into
relevant channels.

The aim is to make sure that there will be instances in
the code where logging operations are not just distinct
actions, but also ways to communicate intent throughout
the SDLC. That way, future maintainers can refactor the
code easier without breaking any assumptions about
the logging operations. Let’s take a look at an example
of feature-driven logging in Rails in which we try to log
user activity information per request. To use the LogDNA
Logger instance directly, you would type:

Instead of doing that, you need to use a user activity
logging module to wrap those events into methods, like
this:

logger.debug(“SSL Purchase Created for

‘#{domain.name}’”)

module ActivityLogging

extend ActiveSupport::Concern

def log_ssl_purchase(domain)

logger.debug(“SSL Purchase Created
for ‘#{domain.name}’”) end

end

end

That way, if you try to change the log details or the level
for the SSL Purchase event, you will only have to revise
it in one place. Using logging facilities like this is a good
way to logically scope them and configure them in a
more granular way, thus making the application easier to
maintain.

https://github.com/logdna/ruby#rails-setup
https://github.com/logdna/ruby#rails-setup

6GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

As far as the client knows, the UserApiService will
still work as expected, but it will now log the call in
logDeprecatedEvent to capture a depreciation event.

Logging Feature Flag Usage

You can log information whenever a feature flag is
modified and used to expose new features to users. By
doing so, you can gain a more thorough understanding
of how the usage of new features affects the existing
application performance or reliability. For example, once
you’ve enabled a flag, you might log this information:

@deprecated({useInstead:
‘UserManagementService’, since:
‘v1.0’, onCall: (params) =>
logDeprecatedEvent(params)})

class UserApiService {

static getUsers() { }

}

function logDeprecatedEvent(params):
void {

Logger.getInstance().info(“Deprecated
call of function with params: ” +
params.toString())

}

logger.info(“Feature Flag”, {“feature_

flag_update”: {“name”: ‘#{flag.name}’,

“from”: “’#{flag.isEnabled}’”,

“to”:”’#{!flag.isEnabled}’”}})

Then, using this as a guidepost, you can record any
performance or related changes in the application and
measure their success or failure.

Logging Helps with
Migration Phases
You can use logging to record how and when certain
method calls are made and also to monitor parts of the
code from which you want to migrate. You’ll want to
log these often and ascertain how much of the existing
system is dependent on them. Let’s walk through some
typical use cases:

Logging Deprecated Features

Our first example is deprecation log messages, wherein
we log the usage of functions that are deprecated and
slated to be removed in future versions. One way to do
this is to wrap the usage of deprecated functions with
function decorators. When an attempt is made to call
this function, we can log the call and record it into the
stream of events. This is what a rough implementation
looks like in Javascript using the class decorator syntax
for conciseness:

https://www.sitepoint.com/javascript-decorators-what-they-are/

7GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Next Steps with Logging

The aforementioned reasons for including logging are
excellent illustrations of just how critical it is to deliver
maintainable and reliable software. To realize the
enormous potential of logging and improve the SDLC
process, you can always rely on a dedicated logging
platform that offers a variety of related services – like
LogDNA. For example, you can receive alerts and
notifications when preconfigured conditions are met
using LogDNA Alerts. Their Boards and Graphs give
you a completely customizable visualization dashboard
that will allow you to present high-level, comprehensive
metrics to stakeholders. By pairing those with Time-
shifted Graphs, you can see how an app performs across
different versions. Start a free trial to see for yourself, or
keep reading to learn more use cases for logging.

Logging Helps with Managing New
Work vs Technical Debt
Technical debt is a term that developers use to describe
unfinished work that they have postponed due to time or
technical limitations. It shouldn’t be a frightening word, and
it does not indicate poor work ethic. It’s relatively common to
produce working code with few extra dependencies, quality
issues, coupling, or inflexible patterns. Trying to refactor
those pieces into a more reusable component may prove to be
counter-productive, since it might not be very valuable to the
end users, and most of the time, it may not be required.

It’s at this point in the SDLC that developers might choose
to delay any such changes to the existing codebase, thereby
managing the technical debt. This does not mean that the
code will not change in the future; if it did, then the developers
would have to repay this technical debt by spending more
time refactoring.

Ultimately, technical debt can become an issue if left
unchecked. For example, it can become a problem if you write
code without considering reusability, or if you add feature
flags here and there without removing them in later stages.

Logs can help manage technical debt by enabling you to
compare existing nonfunctional requirements and metrics
like performance, error recovery, and availability metrics.
For example, developers might touch a piece of code that
already exists by including extra features and releasing it
to production. If they had log monitors for nonfunctional
requirements in place, they could compare the new
behavior to the original and assess changes.
For example, did the new code trigger more error
messages? Did it reduce build time? Did it reduce memory
consumption, or did it increase it? How much time did it
take to fix a particular error? All of these are important
factors to consider when maintaining new and existing
features with logging.

https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/graphs#creating-a-graph
https://docs.logdna.com/docs/screens#changing-the-time-period-duration
https://docs.logdna.com/docs/screens#changing-the-time-period-duration
https://www.logdna.com/sign-up

DEBUGGING IN
DEVELOPMENT WITH LOGDNA

8GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Developing scalable and reliable applications is a
serious business. It requires precision, accuracy,
effective teamwork, and convenient tooling. During
the software construction phase, developers employ
numerous techniques to debug and resolve issues within
their programs. One of these techniques is to leverage
monitoring and logging libraries to discover how the
application behaves in edge cases or under load.

Centralized logging gives users access to the
information that they need to effectively debug during
the development process and LogDNA makes it easy to
retain subsets of logs to meet different teams needs.
For instance, developers often need access to a true
depth of information from their logs, while SREs may be
more interested in lightweight logging levels like info
and trace. Read on to learn how the LogDNA platform
empowers users at all levels of the development
process.

Initial Development
Environment Setup
The first thing you need to do is sign up with LogDNA.
The process is very smooth. From here, you can explore
their dashboard.

https://www.logdna.com/sign-up

9GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

On the dashboard page, you have the option to pre-load
sample log data or configure an agent collector yourself
(or you can do both). If you select the sample data, you
can add applications later. Here is what the screen looks
like when the sample data is loaded:

You also have the option to view in context. When you
click this option, you can see a slice of the logs within the
particular context of source, per app, or both. View in
Context allows you to see the log lines that have lead up to
this event as well as the lines that occured after the event:

You can also filter the logs by level. This is especially
useful for eliminating most of the irrelevant noise when
debugging. You can select the filter levels from the
dropdown options at the top and apply them to the main
view:

Next, we’ll show you how to enroll a new application in the
platform to test in development.

All logs are clearly visible and itemized. When you select
a log line, you can view all of the meta field information
that was logged at that time. This is due to the automatic
parsing of log lines as they are ingested into the LogDNA
platform:

https://docs.logdna.com/docs/context#view-in-context
https://docs.logdna.com/docs/context#view-in-context

10GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Enrolling a New Application
LogDNA supports ingestion from multiple sources using
the LogDNA Agent, Syslog, Code Libraries, and APIs. In
this example, we will enroll a Node.js application sourced
from this repo.

You can follow the installation process as explained in
the Readme. Then, you will need to hook the LogDNA
logger into the Winston.js instance config.

Then modify the util/logger.ts file to include the LogDNA
configuration:

$ npm install ip morgan logdna-winston @
types/ip --save

import winston from “winston”;

import logdnaWinston from “logdna-
winston”;

import ip from “ip”;

const logDNAOptions = {

key: “b5a09b29ad1d386964c61346108fc981”,

hostname: “localhost”,

ip: ip.address(),

app: “Typescript-Node”,

env: “Production”,

indexMeta: true

};

const options: winston.LoggerOptions = {

transports: [

new winston.transports.Console({

level: process.env.NODE_ENV ===
“production” ? “error” :

“debug”

}),
new winston.transports.

File({filename: “debug.log”, level:

“debug” })

],

};

const logger = winston.
createLogger(options);

options.handleExceptions = true;

logger.add(new
logdnaWinston(logDNAOptions));

try {

throw new Error(“It’s a trap.”);

} catch (err) {

logger.error(“Log from LogDNA-
winston”, {

indexMeta: true

, meta: {

name: err.name | ‘Error’

, message: err.message

, stack: err.stack

}

});

}

if (process.env.NODE_ENV !==
“production”) {

logger.debug(“Logging initialized at
debug level”);

}

export default logger;

https://docs.logdna.com/docs/ingestion-methods
https://github.com/microsoft/TypeScript-Node-Starter

11GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Then add an empty module definition for the

logdna-winston package in

/src/types/logdna-winston.d.ts

declare module ‘logdna-winston’;

You will need to provide the secret API key for publishing
logs in the logDNAOptions. This can be found in the Orga-
nization-> API Keys settings:

Once you have everything configured, you can start the
development server and watch the dashboard as the new
logs get populated:

$ npm run watch-debug

Navigate to localhost:3000 and make sure to enable live
monitoring in the LogDNA platform. This can be found at
the bottom right of the LogDNA dashboard.

Now you can see the new entries. If you are having
trouble finding them, you may want to filter by application
first and then select the application name.

Let’s take a look at some of the other debugging utilities
that LogDNA offers.

http://localhost:3000/

12GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Debugging with LogDNA
LogDNA has several options and helpers for debugging
applications. Let’s explore them briefly one by one.

Tracebacks

If you check one of the logs after you have finished the
logging configuration, you will be able to see tracebacks.
That’s because an error was thrown after the logger
was configured and propagated into the platform. By
lookingat the error trace, you can clearly see that the
origin was in the /dist/util/logger.js file.

Alerts

Alerts are crucial to any technology as they give us
a heads up when something is happening within our
environment. With alerts we can get notifications
through various means with LogDNA. Out of the box
LogDNA supports alerts that can be triggered through
email, PagerDuty, and Slack to name a few. LogDNA also
supports webhooks for alerting capabilities.

How do we set up an alert in LogDNA? Alerts start
when we filter down our logs to a specific query we are
interested in. Filtering can take place through several
means within the platform, but for this example we
will use the natural language query syntax to filter
down 400 response errors that are typically specific
to web applications.

Now that we have our filter in place it’s time to set up our
alerting. For that you will notice that you will see your View
change to ‘Unsaved View’ at the top of the Views page.

Clicking on the ‘Unsaved View’ will provide us options
to save the View and attach an Alert to it. If you already
had a saved View you would have the ability to attach an
Alert to that existing View from this menu.

13GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Let’s look at what happens when we click on ‘Save as
new View’.

Within the pop up window we can give the View a name,
add it to a category, and attach an Alert to it. When we
go and attach an Alert to our View we are presented
with the screen below.

From here we can see the various alerting options that
are provided out of the box, and also see the Webhook
option as mentioned before. We will select email for our
first option.

14GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

There is a lot to take in with the above screenshot so
let’s walk through it piece by piece.

The first section is all about alerting off either the
presence or absence of log lines. Think of presence as
meaning “when I see a defined number of lines come in
during a specified period, I want to be alerted to this.”
Absence would be the opposite of that. It would mean
“I’m expecting my application to generate X number
of log lines and if it dips below that, then I want to be
alerted as there may be issues with my application
continuing to run and accept calls properly.” We can also
see when this Alert will be triggered based on our input
with the gray line that runs across the display.

Next we can create custom schedules that define
when this Alert is to be triggered. For this example we
can specify typical working hours of Monday through
Friday from 8:00 am to 5:00 pm. This is useful as we
can create alert escalations that are sent to one place
during normal operation hours and another place after
hours or on the weekends.

Alerting is crucial these days with such busy schedules,
remote working, and it helps avoid things like context
switching where you’d have to be monitoring a web UI
all the time.

Boards and Screens

After setting up Alerts, you can create your own Board
with custom widgets. For example, you can add a
widget that uses only logs from a particular application:

In this example, if you select app and Typescript-Node,
you will see the following graph:

15GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Screens are similar to Boards, but they give you a birds-
eye view of your widgets. You can place them wherever
you like.

Time-Shifted Graphs

After you’ve written some application logic, you can
revisit the application in specific time intervals to check
if the reliability has improved. This can be accomplished
by using Time-shifted Graphs. With this feature, you can
compare log events across two different time spans. To
do so, you begin by selecting a widget from a screen.
Then, using the sidebar options, you can change the
duration field to provide valuable insights about the rate
of events:

These Graphs are excellent for development, since they
demonstrate the general tendency of the log events after
new test cases have been written or major code changes
have been implemented.

Next Steps with LogDNA
This chapter offered a brief tour of the main features of
LogDNA’s platform that cater to developers. We showed
you how to review tracebacks, view in context, use Live
Tail, and set up LogDNA Alerts for fundamental errors.
Together with Boards, Graphs, and Screens, this platform
gives developers a comprehensive set of tools for
debugging applications. You can also take it to the next
level by using LogDNA for production environments – but
we’ll explore that topic later in this eBook.

https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/graphs#boards
https://docs.logdna.com/docs/screens

USING LOGDNA
FOR QA AND STAGING

16GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

The purpose of the QA and staging part of the SDLC
is to test software and – assuming it meets quality
requirements – prepare it for deployment into production
environments. To do this, engineers need to be able to
identify performance or reliability issues that exist within
the application. At the same time, though, they must
ensure that their data is actionable, and that it helps them
quickly fix issues, in order to avoid holding up the SDLC.

For QA and staging, then, logs must provide refined data
that allows engineers to anticipate what will happen in

production, and helps them get to the root cause of any
problems they detect. This chapter explains how to use
LogDNA for this purpose.

Setting Up A Staging Environment

The first thing you need to do is sign up with LogDNA (if
you haven’t already done so when working through the
tutorial in the previous chapter). When this process is
finished, you can explore their dashboard page:

https://www.logdna.com/sign-up

17GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

On the dashboard page, you have the option to pre-load
sample log data, or configure an agent collector yourself
(or you can do both). If you select the sample data, you
can add applications later. Here is what the screen looks
like when the sample data is loaded:

All logs are clearly visible and itemized. When you select
a log line, you can view all of the meta field information
that was logged at that time:

Next, we’ll show you how to enroll a new application in the
platform and run it in production mode so that we can
perform tests and log events.

Enrolling a New Application
As explained in the previous chapter, LogDNA supports
ingestion from multiple sources using the LogDNA Agent,
Syslog, Code Libraries, and APIs. In this example, we will
log data from a Node.js application sourced from this
repo.

(This is the same application that we enrolled in the
tutorial in the preceding chapter, but the enrollment
process is slightly different in this chapter because here
we are setting up a staging environment that is designed
to mimic production, rather than a development
environment – so, to get the most out of this chapter, it’s
best to enroll the application again using the steps below,
rather than reusing the one from the previous chapter.)

You can follow the installation process as explained in the
ReadME. Then, you will need to hook the LogDNA logger
into the Winston.js instance config.

Install the following packages:

$ npm install morgan @types/morgan ip

logdna-winston @types/ip --save Then
modify the util/logger.ts file to include the
LogDNA configuration:
import winston from “winston”;

import logdnaWinston from “logdna-winston”;

import ip from “ip”;

const logDNAOptions = {

key: “LOGDNA_KEY”,

hostname: “localhost”,

ip: ip.address(),

app: “Typescript-Node”,

env: “Development”,

indexMeta: true
};
const options: winston.LoggerOptions = {

https://docs.logdna.com/docs/ingestion-methods
https://docs.logdna.com/docs/ingestion-methods
https://github.com/microsoft/TypeScript-Node-Starter

18GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Then add an empty module definition for the

logdna-winston package in

/src/types/logdna-winston.d.ts

declare module ‘logdna-winston’;

You will need to provide the secret API key for publishing
logs in the logDNAOptions. This can be found in the
Organization-> API Keys settings:

Once you have everything configured, you will need to
start the production environment server.

You want to get close to a production instance even
when connecting to MongoDB or Social Login; for
example, in the demo application there are .env options
for MONGODB_URI, FACEBOOK_ID and FACEBOOK_
SECRET. Those are used to log in via Facebook and
for connecting to a remote MongoDB instance. We
recommend a production ready MongoDB server from
MongoDB Atlas and using a testing account for the
Facebook Login.

You will have to build the assets first and then start the
server. This can be done with the following commands:

$ npm run build && npm run start

transports: [

new winston.transports.Console({

level: process.env.NODE_ENV ===
“production” ? “error” :

“debug”

}),

new winston.transports.File({
filename: “debug.log”, level:

“debug” })

],

};

const logger = winston.
createLogger(options);

options.handleExceptions = true;

logger.add(new
logdnaWinston(logDNAOptions));

if (process.env.NODE_ENV !==
“production”) {

logger.debug(“Logging initialized at
debug level”);

}

export default logger;

https://www.mongodb.com/cloud/atlas
https://developers.facebook.com/docs/facebook-login/testing-your-login-flow

19GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

You will see the following events logged into the console:

(node:47780) Warning: Accessing non-
existent property ‘MongoError’ of module
exports inside circular dependency

(Use `node --trace-warnings ...` to show
where the warning was created)

App is running at http://localhost:3000
in production mode

You can navigate into http://localhost:3000/ and interact
with the page.

Testing the Environment with
LogDNA

If you try to sign up a new account with email, you may
encounter an internal server error when navigating to the
account page:

Currently the logger does not capture any information
about the error. Let’s use the logger to record those error
messages so we can inspect them in the LogDNA dash-
board.

For every render method, you need to add an appropriate
handler. For example in src/controllers/home.ts
replace the code with:

export const index = (req: Request, res:
Response, next: any) => {

res.render(“home”, {

title: “Home”

}, function(err, html) {

if(err !== nutll) {

next(err);

With errors captured in the template, we need a
middleware function to log errors. You can do that by
including the following handler in src/server.ts:

app.use((err: any, req: any, res: any,
next: any) =>

{ if (err) {
logger.log({

level: “error”,

message: err.message

});
}

next(err);

});

// eslint-disable-next-line

// @ts-ignore

app.use(morgan(“combined”, {

stream: {

write: (message: string): void => {

logger.info(message.trim());

}

}

}));

You may also want to capture access logs. You can add a
morgan logger middleware in src/app.ts:

} else {
res.send(html);

}
});

};

http://localhost:3000/

20GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Now you can inspect the logs in the main Live Tail view:

Alerts

You can set up Alerts so that certain log lines trigger
notifications. This is done in the Alerts sidebar option:

Let’s first create an Alert that triggers an email after at
least 5 events are logged. When you click ‘Add Preset’ you
will need to fill in those details:

Once created, you want to attach a View to it. A View is a
saved filtering of logs based on some criteria like status
codes for 400, 500, or other errors. In this example, we
create a View for the template errors we found earlier.

On the Logs View, you want to select the appropriate
filters on the top bar. Select host=localhost, Applica-
tion=Typescript-Node and level=Error and click on the
Unsaved View -> Save as a new view and select the Alert
we created before.

21GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Let’s add another one for specific status codes like 304,
400, and 500. You may want to use the bottom search
bar. Enter the following query and save it as new View:

response:304 OR response:400 OR
response:500

The View modal shows the parameters you selected and
which Alert to use:

Now you will get email notifications when you exceed
those alert thresholds:

22GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Sharing Views with Developers

Now that you’ve created some custom Views, you can
share them with developers or related parties so they can
inspect them on their own. You can use the Export Lines
option to grab an export when selecting an existing View
from the top Bar:

You will get an email containing the lines in jsonl (JSON
Lines) format. Send those files to the developers; they
can inspect them with the following command:

> cat
export_2021-04-08-15-16-00-827_544dfc58-

785c-4a1f-9151-8b480dd038ef.j sonl | jq .

If the developers have access to the Dashboard, you can
share the link to the View as well. This is an example link:

https://app.logdna.com/b5a09b29ad/logs/view/
d02237cb23

How to Exclude Log Lines Before and After
Ingestion

When logging information in requests--especially for
environments that mimic the production site--it’s
significant not to capture any sensitive data such as login
credentials or passwords. You can define rules, using
regex (regular expressions), to control what log data
is collected by the agent and forwarded to LogDNA to
prevent those kinds of events from ever appearing in the
LogDNA dashboard (check out this GitHub repo to learn
how).

You may also want to filter out logs by sources, by app,
or by specific queries using an Exclusion Rule. These
are great for excluding debug lines, analytics logs, and
excessive noise from logs that aren’t useful. You can
still see these logs in Live Tail and be alerted on them
if needed but they won’t be stored. To start, find the
Usage-Exclusion Rules option in the sidebar:

Then you will need to fill in some information about the
rule. You may want to find specific log lines that match
the query first. Here is an example with a message
matching the following lines:

meta.message:’password=’ OR meta.
message:’email=’

This tells us to ignore lines with messages containing
the strings password= or email=. Note that this
can still capture those lines, it just doesn’t store them.

https://app.logdna.com/account/signin?returnurl=%2Fb5a09b29ad%2Flogs%2Fview%2Fd02237cb23
https://app.logdna.com/account/signin?returnurl=%2Fb5a09b29ad%2Flogs%2Fview%2Fd02237cb23
https://github.com/logdna/logdna-agent-v2/tree/3.2.0-beta.1#configuring-regex-for-redaction-and-exclusion-or-inclusion

23GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Then you may want to create a new View for that
Environment. In order to capture errors you may want to
configure a custom reporter to log any failed test cases.
This is beyond the scope of this tutorial, but you can see
an example using Jest here:

https://jestjs.io/docs/configuration#reporters-
arraymodulename--modulename-options

Once you get those logs captured, you can connect them
with Alerts and Boards as well. This will help you visualize
these errors and correlate them with recent code changes.

Next Steps
In this chapter, we saw how to leverage the LogDNA
platform for QA and staging environments. As a rule
of thumb, those environments should match exactly
the production versions in both functional and non-
functional requirements. Additionally, when running
integration and system tests, those test logs should
be queryable in case of failures. Using LogDNA Alerts,
Boards, Graphs and Screens can help catch and visualize
those errors in correlation to any recent code changes.
Lastly, using saved Views, you can delegate important
information to developers when trying to discover
significant problems or performance bottlenecks. Feel
free to try the LogDNA platform at your own pace.

const isCI = process.env.CI === “true”;

const logDNAOptions = {

key: “b5a09b29ad1d386964c61346108fc981”,

hostname: “localhost”,

ip: ip.address(),

app: “Typescript-Node”,

env: isCI ? “testing” : “production”,

indexMeta: true

};

It’s a best practice for users to redact PII and sensitive
information from their apps before sending them to
LogDNA; so if you want to capture the information but
not the sensitive data, you will need to redact those
fields from the application as well or mask them at the
agent level.

Examining automated tests for failures

You are not limited to using the logger instance for
runtime information capture. You can use it for CI/CD
pipelines and test cases as well. This would give you
a convenient way to capture test results all within the
LogDNA dashboard.

Because you may want to capture specific information
within a CI/CD pipeline, you want to attach a meta tag or
a different level on it. At first, when you run test under CI/
CD, you want to set a CI=true environment variable and
pass it into the logger instance config:

https://jestjs.io/docs/configuration#reporters-arraymodulename--modulename-options
https://jestjs.io/docs/configuration#reporters-arraymodulename--modulename-options
https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/graphs
https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/graphs#boards
https://docs.logdna.com/docs/graphs
https://docs.logdna.com/docs/screens
https://docs.logdna.com/docs/views
https://www.logdna.com/sign-up

USING LOGDNA TO
TROUBLESHOOT IN PRODUCTION

24GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

In 1946, a moth found its way to a relay of the Mark II
computer in the Computation Laboratory where Grace
Hopper was employed. Since that time, software
engineers and operations specialists have been plagued
by “bugs.” In the age of DevOps, we can catch many bugs
before they escape into a production environment. Still,
occasionally they do, and they can spawn all kinds of
unexpected problems when they do.

In addition to software bugs, today’s modern systems
encounter other problems as well. And these problems

collectively manifest as issues in production. Or, as some
might refer to them, the dreaded incident!

When an incident occurs, it’s not always readily apparent
why it happened or what caused it in the first place. This
chapter explores some of the different situations that
can result in a production incident, and we’ll investigate
how you can uncover these situations using LogDNA.
Troubleshooting a production incident shares many
similarities with how a medical professional might
approach a patient’s diagnosis. We look at the symptoms,
we run tests, and we reach a diagnosis by drawing on our
experience, the experience of others, and sometimes
even relying on the process of elimination.

25GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Detection and Recovery
Production incidents have two distinct phases: detection
and recovery. Many teams track Mean Time To Detection
(MTTD) and Mean Time To Recovery/Resolution (MTTR)
metrics. MTTD is a measure of how long it takes for a
problem or incident to be identified and acknowledged by
the responsible team. MTTR then measures the amount
of time before the team can identify and rectify the
underlying cause.

This chapter is not about tracking metrics; however, it is
essential to measure and track their effect on our results
when we’re investigating and investing in new ideas and
tools. Metrics such as MTTD and MTTR provide visibility
into how effectively the organization manages the
incident process and how valuable different approaches
and toolsets are within that process.

The Complexity of Modern
Systems
Modern computer systems have begun to rely on
microservice architectures, patterns for high-availability,
and public cloud offerings. We build highly scalable systems
that take advantage of ever-improving connectivity and
the availability of third-party infrastructure and services.
While the benefits are apparent, we find ourselves
managing increasingly complex systems. Let’s consider
the example of a web application that becomes
unresponsive.

Networking Problems

Between the user and our web application, there is a
complex web of connections running on private and

public infrastructure. Service outages and hardware
failures can easily affect a user’s ability to connect to
our systems. Even within our systems, network calls
travel between different instances and services. Our
applications and services may be running perfectly, but if
the connections between them are broken or experience
performance degradation, the system won’t work as
expected.

Performance Issues

Performance issues can occur due to hardware
problems, constraints in frameworks and infrastructure
we rely on, or poor design within the code itself. As the
amount of traffic our applications handle increases,
many of these problems grow exponentially, resulting in
performance degradation or connection timeouts.

Why Centralized Log Management
is Essential
Logging has always been a central component of
understanding and troubleshooting applications. System
and application logs provide an essential window into
how data is processed and transferred, as well as the
infrastructure’s performance. Distributed systems
complicate log management because there are so many
different places where logs are created and stored.

26GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

Centralized log management solutions, like LogDNA, give
you the ability to collect and aggregate all of your logs in
a central location. However, collection and aggregation
are just part of the solution. Search capabilities allow
you to find relevant logs to help troubleshoot production
problems and monitor the health of different parts of
your application. Many systems also include monitoring
and configurable alerts to automatically identify
problems and anomalies, and automatically alert support
personnel to address them.

Comprehensive Alerting

The most common types of alerts identify error conditions
within your application. More advanced systems like
LogDNA allow you to specify the type of error and its
frequency as part of the alert. In addition to error states,
you can also configure an alert based on the results of a
predefined query against your logs.

In addition to alerts based on the presence of an error
condition or log query, you can also configure alerts based
on the absence of certain types of logs. An example might
be an online commerce site that expects a minimal level of
transactions each hour. A lack of these transactions might
indicate an access problem within the application.

When used together, alerts for both the presence and
absence of different conditions relieve your engineers
of the responsibility to regularly review logs, and they
can focus on building new features or improving their
processes. You can learn more about alerting from the
LogDNA Alerts Overview.

Root Cause Analysis

Once your support teams have received an alert from the
log management system or a production incident has
occurred, teams need to shift into resolution mode. The
first step in the process is a root cause analysis. You can’t
resolve a problem until you have identified the reason it
occurred and each of the components involved.

Identifying a problem in a distributed system can be
incredibly challenging because you first need to identify

which service is causing the problem and which services
are affected by the situation. This investigation is where
the ability to search through an aggregated collection
of logs using request or transaction identifiers, time
constraints, and additional filters is invaluable. You can
learn more about how to search logs in the LogDNA Search
Documentation.

Once you’ve identified the problem and worked on a
solution, you’ll typically want to deploy the solution while
actively monitoring the logs. LogDNA’s Live Tail lets you
monitor logs as they are received from your application,
giving you real-time visibility into the new deployment
status and allowing you to validate its success or failure.
You can also use the log management system to aggregate
the logs and perform searches after time has passed.

https://docs.logdna.com/docs/alerts
https://docs.logdna.com/docs/search
https://docs.logdna.com/docs/search

CONCLUSION

27GUID E TO USING LOGD N A ACR O S S T H E S OF T WA RE D E V ELO P MEN T L IF ECYCL E

In this eBook, we’ve shown how to leverage logs
and LogDNA to drive three key stages of the SDLC:
Development, QA and staging, and production.

There’s no doubt that logging (and LogDNA) can help
optimize other SDLC stages that we haven’t discussed
here. You can use logs to assess functionality
requirements and plan new features during the planning
phase of the SDLC, for example. Likewise, logs can
help teams during deployment to ensure that a new
application release is deployed smoothly, or to help
manage complex deployment patterns such as those that
come with canary or A/B releases.

In other words, no matter which stage of the SDLC you
help manage, or which challenges you face, logs are one
key resource to help you do your job better. And in a world
where teams are expected to deliver new application
releases multiple times per week, or even per day,
engineers need every insight and data point available to
them to keep the delivery pipeline flowing smoothly.

Thank You
Sales Contact:
Support Contact:
Media Inquiries:

outreach@logdna.com
support@logdna.com
press@logdna.com

mailto:outreach%40logdna.com%20?subject=
mailto:support%40logdna.com?subject=
mailto:press%40logdna.com?subject=

