v//

é?e%

. (,O

The ..
Fundqmentqls/ Z

-of Telemetry -
Plpellnes

B And How They Are Used to Maintain
Application Performance

REPORT

UNDERSTAND,

OPTIMIZE, AND RESPOND
WITH MEZMO
TELEMETRY PIPELINE

1%

=1 controL TELEMETRY DATA
¥ W% WITH CONFIDENCE

) .I;w.:l
E’&i? T STARTED FOR FREE
. ra:“.m
E bee J.BZ MO.COM/OREILLY

“' GE
= , y
mezmo

https://www.mezmo.com/sign-up-pipeline-today?utm_medium=referral&utm_source=sponsorship&utm_campaign=pipeline-sign-up-oreilly-report

The Fundamentals of
Telemetry Pipelines,

Revised Edition
And How They Are Used to Maintain
Application Performance

Russ Miles

with Kai Alvason

Beijing + Boston + Farnham -« Sebastopol « Tokyo [KOAR{=I|NAE

The Fundamentals of Telemetry Pipelines, Revised Edition
by Russ Miles with Kai Alvason

Copyright © 2024 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://oreilly.com). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisition Editor: John Devins Interior Designer: David Futato
Development Editor: Virginia Wilson Cover Designer: Karen Montgomery
Production Editor: Kristen Brown lllustrator: Kate Dullea

Copyeditor: Miah Sandvik

September 2023: First Edition
September 2024: Revised Edition

Revision History for the Revised Edition
2024-09-18: First Release

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. The Fundamentals
of Telemetry Pipelines, Revised Edition, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Mezmo. See our statement
of editorial independence.

978-1-098-17832-1
[LSI]

http://oreilly.com
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Preface

1.

Table of Contents

The Need for Telemetry Pipelines.

Taming the Data Flood

The Incremental Value Chain
Understand, Optimize, Respond
An Example Pipeline

. The Domain Language of Telemetry Pipelines..............

The Building Blocks of Telemetry Pipelines
Bringing It All Together

. Managing Your Telemetry Pipelines......................

Managing and Debugging Your Pipelines
Debugging Your Pipeline
From Control and Management to Business Value

Containingthe Cost.........oovvviiiiriinrinniennnnnnn,

Processors Are the Key
Cost, Controlled

19
19
22
24

25
25
28

5. Embracing Compliance.c.coovviiiiiiiiiiiiinieninnenn,

The Key Is Processors, Once Again! 30
The Case of Conformance to GDPR 30
Helping with Compliance: Another Telemetry Pipeline
Payoff 31
6. Conclusion........ooovviiiiiiiiiiiiiiiiini 33
vi | Tableof Contents

Preface

This report is for DevOps, site reliability engineers, and security
engineers struggling under a promising deluge of telemetry data.
High-quality metrics, traces, and logs are all essential to observing
and working with modern systems but, when theyre applied to a
modern, complex cloud-based system, the result can be a confusing
mess.

Telemetry pipelines give you the tools to navigate this mess, provid-
ing the ways and means to extract so much more from your data.
In this report, you’ll learn what the promise of telemetry pipelines is
and how it feels to be able to use telemetry pipeline tools to master
your flood of telemetry data. From there, we dive into the key
concepts you'll need when you build your own telemetry pipelines,
and we look at some real-world examples. By the end of this report,
you'll understand how investing in your own telemetry pipelines
can help you go even further, implementing valuable business cases,
such as compliance and cost management.

vii

CHAPTER 1
The Need for Telemetry Pipelines

Data is the new oil.

—Clive Humby

While the concept of observability and using observability tools for
gaining insight into telemetry data has been around for a while,
using telemetry pipelines to preprocess data before sending it to
observability tools or storage is very recent. In this chapter you’ll
learn some fundamental concepts for understanding what a teleme-
try pipeline is and how it can help add value to the information pro-
vided through your observability tool. Plus, you'll see an example
of a pipeline designed to engineer data from three different sources
into useful information for downstream tools.

Taming the Data Flood

Contemporary cloud systems and applications provide a torrent of
data through their logs, but the sheer volume of the data is so
overwhelming as to render it almost meaningless. The development
of observability tools has provided a means to find nuggets of infor-
mation within the data flood, but at the very high cost of taking
in the entirety of the data to glean a few meaningful insights. Like
a dam against a flood, an observability tool is a means to derive
some value from log data, at the cost of having to construct a
monolithic structure that, at best, keeps downstream systems from
being overwhelmed.

Unlike a dam that can only hold back the flood, a telemetry pipeline
can channel your telemetry data, optimizing and adding value to it
along the way, so that what arrives at the end is already information-
rich and actionable. Instead of being a potentially destructive force
that has to be controlled, your telemetry data becomes a resource
that you can carefully and intentionally refine to meet your observa-
bility and data storage needs. Like oil that starts as a geyser from
the ground and is then sent through refining processes to become a
variety of products, your telemetry data can be refined from crude
output to useful information that can power your enterprise.

The Incremental Value Chain

At its most basic, a telemetry pipeline is a series of operations that
transform data from a source through a step-by-step process before
delivering it to a destination. Often this will be an observability tool
or a storage solution, and in many cases the purpose of the teleme-
try pipeline is to make the source data more easily ingested by the
tool. In this most basic form, a telemetry pipeline is little more than
a means to reformat data from point to point. A more advanced
conception of a telemetry pipeline understands it as a means to
increase the incremental value of your data as it passes through the
pipeline. For example, consider these steps in the lifecycle of data as
it becomes information:

1. Raw data from a single source has minimal value and requires
extensive manual intervention to yield even basic insights.

2. Sending raw data from multiple sources into a telemetry pipe-
line centralizes the data and enables automated processing. This
significantly reduces the toil required by individual teams to
begin extracting information from the data and decreases the
time to realize value from that information.

3. As data enters the pipeline and is analyzed, it becomes possible
to begin understanding the data by surfacing common patterns,
identifying useful versus redundant data, and recommending
ways to optimize it. The value of the raw data is significantly
increased simply by being able to separate what is valuable from
what is not, and then pass the valuable data further down the
pipeline.

2 | Chapter 1: The Need for Telemetry Pipelines

4. As it passes through the pipeline, the data is transformed and
optimized by processor chains that are purpose-built to derive
the most meaningful information for use by downstream teams.

5. At the end of the pipeline, the raw data becomes actionable
information that can enable teams to rapidly respond to inci-
dents, gain business insights, and operate in a more secure
environment.

Understand, Optimize, Respond

All refining processes proceed in phases that begin with understand-
ing the crude material, devising the processes that it will pass
through during refinement, and then distributing and delivering
it in the form that makes it most useful. For telemetry data, there
are three phases for refining the raw data into useful information:
understand, optimize, and respond. Each of these are reflected in the
functional aspects of a telemetry pipeline.

An analytical tool can provide you with a basic understanding of
your data (Figure 1-1). Understanding the data means being able to
sort the potentially valuable data out from the general flow of events,
metrics, and tracks that are generated by your sources. Functionally,
this is usually handled by pipeline components like parsers, which
can separate elements from the flow in the same way that a miner
panning for gold in a stream is able to separate small nuggets from
the gravel in his pan.

When used in conjunction with an analytics tool that can provide
you with a profile of your data, you can identify redundant or irrel-
evant data that you may want to send to storage for a full-fidelity
copy of the stream, but can route away from your observability tool
saving both the cost and the toil of trying to process this informa-
tion within your tool.

Understand, Optimize, Respond | 3

Incoming log size Reduced size Total Unique Unique Unique

XXX XXXB XXX XXXB events hosts events apps
XXX X X X

Filtername X | Filter name X | Filter name X

Message about what you can do on the profiler page.
Add one or more filters to see the impact on log volume then Apply filters as processors
click here to apply these filters to a pipeline.

Data profile

~

J

r
_

Filter
actions

<& Type Identified log pattern Total lines| Total size

Loremipsum 240b0ebd6ddc22d833calc572c918d*,
dolor":301,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":200,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":301,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":400,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":301,"sit-amet": "su_tarjeta-adami_mei22"}
Lorem ipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":400,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":500,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572c918d*,
dolor":200,"sit-amet": "su_tarjeta-adami_mei22"}
Loremipsum 240b0ebd6ddc22d833calc572¢918d*,
dolor":301,"sit-amet": “"su_tarjeta-adami_mei22"}

Loremipsum 240b0ebd6ddc22d833calc572c918d*,
dolor":500,"sit-amet": "su_tarjeta-adami_mei22"}

XXO0%) |30 (xco%) (Ll I

X |LabelName logs

X |LabelName XX (XX%) [XXxb (XX%) Elgtsr v

Filter
logs

>

LabelName XX(XX%) | XXxb (XX%)

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%)

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%)

>

LabelName X 00c9e) [(xxoe) [

logs

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%)

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%)

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%)

Filter
logs

>

LabelName XX (XX%) [XXxb (XX%) v

Figure 1-1. An example of an analytics tool that presents a data profile
of telemetry data as it enters a pipeline

4 | Chapter 1: The Need for Telemetry Pipelines

Once you have an understanding of the data, you can then optimize
it by sending it along processing chains to transform and engineer
the data to meet your requirements. This is like taking crude oil and
refining it into different products like gasoline, kerosene, and diesel
fuel. Each of these end uses requires a different processing approach.
Requirements like encrypting personally identifying information
(PII), setting up metrics for observability tools, and sending dif-
ferent data components to different destinations also require the
construction of specific processor chains. The later sections in this
report go into detail about many of the typical processors used in a
pipeline, and how to use them for purposes like controlling cost and
assuring adherence to data compliance regulations.

The end goal of any telemetry pipeline is to provide downstream
users with actionable information that enables them to respond
to outages, incidents, and real-time business information. While
observability tools can provide some of this functionality, it is
largely after the fact, and there is often significant lag time between
when an incident occurs, when the data is indexed by the tool, and
when the tell-tale signals are transmitted. A telemetry pipeline, on
the other hand, can have detection tools built into the processing
chains that will not only send alerts, but can also change the func-
tioning of the pipeline itself when an incident or outage is detected
within the data. Rather than having to wait for an observability tool
to catch up with a sudden surge in 500 - Internal Server Error
messages, for example, a responsive telemetry pipeline could send
an immediate alert and begin to process those specific messages to
aid in diagnosing the problem within the observability tool.

An Example Pipeline

In the most basic structural definition, a telemetry pipeline is built
using data sources, processors, and downstream destinations. The
design of the processing chains is determined by the content and
format of the source data, as well as the format and information
requirements of the tool and storage destinations. This seems simple
enough, but the question naturally arises: how do I know which
processors (or groups of processors) to use to achieve my data
engineering requirements?

An Example Pipeline | 5

For example, imagine a situation in which your sources include
transaction data in JSON format, Apache error messages as raw
strings, and system events in JSON. In planning your telemetry
pipeline architecture, there are several aspects of the source data that
you need to consider:

Sending the entire data stream to your storage and observability
tools, when only some of the data is useful, will result in egre-
gious costs.

The financial data contains PII that must be encrypted before
being stored or used in an observability tool.

The raw strings of the Apache errors must be converted to
JSON before they can be processed through the rest of the
pipeline.

Different components of each data type need to be routed to
separate destinations.

Events need to be converted to metrics to create visualizations
and dashboards in observability and analytics tools.

With this understanding of your data, and the analysis of what is
useful within it and what is not, you can develop the architecture
and processing chains to optimize it for your requirements:

Routing and dropping events that contain little useful data,
like Status - 200 responses and Apache INFO messages, can
result in a significant decrease in the volume of data sent to
downstream destinations. You can accomplish this by using a
route processor that uses conditional statements to identify the
information you want to drop and sends it to a drop destina-
tion. You can also set the processor to detect whenever there is
a rise or drop in the expected number of messages beyond a set
threshold, and to send an alert or trigger an incident response
when the change is detected.

The PII should be encrypted, or redacted entirely, before reach-
ing its downstream destinations. You can accomplish this by
using a redact processor to completely obfuscate the informa-
tion, or an encrypt processor if you need access to the infor-
mation later, for example if you need to be able to investigate
fraudulent charges against a specific credit card number. In this
case, you could send the encrypted information to a specific

6

Chapter 1: The Need for Telemetry Pipelines

storage location with limited access, and then use that storage
location as the source for a decryption pipeline with an analytics
tool as the destination.

The Apache errors must be reformatted at the source so they
can be processed through the pipeline. You can accomplish this
by using a script processor to run a formatting script for each of
the error messages before it is sent to the route processor.

Large numbers of identical event messages have little informa-
tional value on their own, but when aggregated into metrics
measured over time they can provide detailed insight into sys-
tem health. You can accomplish this with an event-to-metrics
processor that is configured to provide counts of specific met-
rics over specific time intervals. Again, in a responsive pipeline,
this processor could also be set to send alerts and change the
pipeline functionality when an in-stream change in the data is
detected.

The final structure of a pipeline that is designed with these source
and information requirements in mind would resemble the one
shown in Figure 1-2.

Here is a list of the components shown in Figure 1-2:

o e

Sources

Script execution processor to reformat Apache error messages
Route processor

Encrypt credit card number

Destinations representing a drop destination, a storage location,
and an observability tool

An Example Pipeline | 7

Sources Processors Destinations

Financialdata
Demo logs

350.97B/s

JSON data
Demo logs

17411B/s

Apacheerrors
Demo logs

140.71B/s

Convertto JSON __,
Script execution

Router
Route °*°

200 Events f G

Info

Transactions f oo

Unmatched f oo

Drop
Blackhole

229098/
@ Storage

Blackhole
46298/s

Observability
tool
Blackhole

{ 4629 B/s

EncyptCC .
ﬂ number

Encrypt field

Figure 1-2. A schematic representation of a pipeline to meet basic data
engineering requirements

In the remainder of this report you'll learn more about how to set
up pipelines to meet specific use cases like cost reduction and data
compliance, and about the most common processors used to meet
these use cases.

8 | Chapter 1: The Need for Telemetry Pipelines

CHAPTER 2

The Domain Language of
Telemetry Pipelines

There is a tide in the affairs of men

Which, taken at the flood, leads on to fortune;
Omitted, all the voyage of their life

Is bound in shallows and in miseries.

On such a full sea are we now afloat.

And we must take the current when it serves,
Or lose our ventures.

—William Shakespeare, Julius Caesar

In Chapter 1, you saw how telemetry data has become a flood:
a flood where the properties of your telemetry data need to be
considered so that you can get the most value out of all the data that
is available. In this chapter, youre going to explore the foundational
concepts of telemetry pipelines so that you can begin to do exactly
that.

The Building Blocks of Telemetry Pipelines

Telemetry pipelines are made up of five concepts: sources, streams,
processors, destinations, and, of course, the pipeline itself. Sources
are your faucets for the flood of telemetry data being emitted
from your systems. Each source produces a stream of structured
telemetry data. Processors are the workhorses that do what it takes
to manipulate those streams of telemetry data you've tapped into.

Destinations are your channels to bring this refined telemetry data to
downstream tools and other systems. Finally, the pipeline packages
all these sources, streams, processors, and destinations into a unit
you can work with and manage. Let’s take a closer look.

Starting at the Source

Most data pipelines start by answering the question, “Where are we
going to get our data from?” That is also true of telemetry pipelines.
The difference is that your sources will be the various parts of
your runtime systems emitting telemetry data: the logs, metrics, and
events. The sources on your telemetry pipelines are your taps into
the flood of telemetry data that is readily available. Depending on
the telemetry pipeline tools you use, you may be presented with a
very wide range of possible sources, as shown in Figure 2-1.

Telemetry pipeline

"
S

»
'@O

Telemetry data sources

Storage

Figure 2-1. Telemetry pipeline sources

Sources can be extremely varied, including (but not limited to!) the
following:

Applications

Telemetry data emitted from your applications and services
Logs

Recorded entries of events within the system

10 | Chapter2: The Domain Language of Telemetry Pipelines

Metrics
Snapshots or trends of important system characteristics, such as
disk space, speed of response, and so on

Traces
Information that combines events to give a picture of an impor-
tant flow within the application or service, sometimes end to
end

Events
A discrete action happening at a moment in time; often recor-
ded in log data

Infrastructure
Telemetry data on the state of low-level infrastructure, includ-
ing virtual machines, networks, gateways, and so on

Networks
Traffic flow information like Netflow or sFlow and network-
ing device metrics like Simple Network Management Protocol
(SNMP) data

Platforms
Telemetry data emitted from platforms like Kubernetes

Say you have a Kubernetes cluster that is already pushing its logging
out to the Splunk HTTP Event Collector (HEC), but you're not yet
doing anything useful with the other telemetry data, metrics, and
system events in particular that Kubernetes makes available. Your
first step is to bring those collections of data into your telemetry
pipeline as new sources to make them candidates to be worked on
before they can be surfaced as a richer, correlated picture.

What's the Destination?

Destinations can be very similar to sources. They are places that you
want to push your conditioned telemetry data to.

A destination could manifest as a simple write to a storage location,
such as Amazon S3, or could move your conditioned telemetry data
into your favorite observability tool, as shown in Figure 2-2.

The Building Blocks of Telemetry Pipelines | 11

https://oreil.ly/NsCp7
https://oreil.ly/jN1Xa

Your destinations provide the places to surface your newly condi-
tioned telemetry data. You can add as many destinations as you
need, from observability to Cloud Infrastructure Entitlement Man-
agement tools, to get your data where it is most useful.

Telemetry pipeline

Applications
Storage

Platforms » Storage »
Infrastructure

w W\/

Telemetry data
sources

Figure 2-2. Telemetry pipeline destinations

Do Cross the Streams: From Sources to Destinations

A source and a destination establish a connection—a stream—
between them. Sources parcel up the input data into structured
events that can then flow to one or more destinations. Destinations
take that stream of telemetry events and package them to surface
them in a useful way, as shown in Figure 2-3.

12 | Chapter 2: The Domain Language of Telemetry Pipelines

Streams
Destination

Structured
telemetry data

Source

Destination

Figure 2-3. Streams of structured telemetry data

These streams are what you work with when harnessing the power
of telemetry pipelines. Each stream is an opportunity to enrich,
correlate, transform, and route structured telemetry events into new
forms and to new destinations. Sources establish your streams, des-
tinations take streams to useful external places, and the streams are
what you focus and work on. The streams you establish open up a
wealth of possibilities for the next telemetry pipeline concept: the
processor.

Adding Processors

With a source and a destination, you have a channel through which
telemetry data can flow but no additional work is being done. That
work is the job of the telemetry pipeline processor. Processors con-
nect to sources, to other processors, and, eventually, to destinations
to perform functions like transforming and routing your telemetry
data as it flows through your system, as shown in Figure 2-4.

The Building Blocks of Telemetry Pipelines | 13

Telemetry pipeline

Applications Q

Infrastructure

Telemetry data Telemetry data
sources destinations

Figure 2-4. Telemetry pipeline processors connect to sources, other
processors, and, eventually, destinations

The types of processors you'll see throughout this report include:

Route
A route processor takes the content of an incoming event and,
according to a set of rules, channels that event to usually more
than one output stream. An example might be where personally
identifiable information is detected in an event and is then
routed to a compliant stream and destination. (See Chapter 5
for more on this case.)

Deduplicate
A deduplicate (or dedupe, for short) processor looks for dupli-
cate events and drops them, reducing the overall number of
events in the stream, possibly for cost reasons.

Encrypt
An encrypt processor will encrypt one or more fields within a
telemetry event before passing it on. This is a great processor
for when you want to hide personal or financial data from an
audience at a particular destination.

Sample
A sample processor will downsample the events in a stream,
producing fewer events where specific events being dropped

14 | Chapter 2: The Domain Language of Telemetry Pipelines

doesn’t significantly reduce the usefulness of the telemetry
stream. This processor is frequently used for saving space and,
therefore, saving money by reducing the data transmitted to and
retained by a particular destination. (For more, see Chapter 4.)

Filter
A filter processor can selectively drop or pass on an event based
on its contents.

Reduce
A reduce processor takes multiple log input events and com-
bines them into a single log event based on specified criteria.

Parse
A parse processor takes incoming data of a known format
and converts it into a parsed set of values prior to subsequent
processing.

Event to metric
The event-to-metric processor provides an easy way to create a
new metric event within the pipeline, typically from an existing
log message. The new metric event can use data from the log to
generate the metric, including the value if desired.

This is just a small sample' of the processors that you could poten-
tially use for your telemetry pipelines.* The more powerful your
processors, the more control you can exert over your telemetry data
streams, and the more you can turn your flood into something
valuable to your business.

Bringing It All Together

Enough with the concepts, let’s look at a real example of all these
telemetry pipeline building blocks in action. Let’s take a situation
where we have archived logs in an Amazon Web Services (AWS)
S3 bucket that we want to bring into a telemetry pipeline so we
can bring that data into Splunk for some further exploration and
analysis. Maybe the auditors are knocking gently on the door to get

1 Please forgive the bad pun!

2 A good resource is the growing list of processors available in the Mezmo docs.

Bringing It All Together | 15

https://oreil.ly/FydH3

a peek at some historical records of how your systems performed or
how they were changed.’

The first thing you do is bring that data into your telemetry pipeline
by configuring an AWS S3 source. This can be done by configuring
an Amazon Simple Queue Service (SQS) queue in your telemetry
pipeline toolset. The AWS S3 bucket’s data will be streamed into the
Amazon SQS queue, and that can then be picked up by the AWS
S3 source before being channeled to a destination, such as Splunk
HEC, as shown in Figure 2-5.

Am_%zon Your stream Splunk
HEC

source

Figure 2-5. Establishing a stream to work with between your archived
AWS 83 source (via SQS) and your Splunk HEC destination

The plan is to bring those logs into Splunk so that you can do
some further analysis, but the cost could be high if all the data
is brought in as is. Fortunately, the auditors are interested only in
where interactions with your system failed at this point, so you can
focus the data on just the 500 status entries in your logs. This is
where the power of the pipeline comes in, as shown in Figure 2-6.

3 More on those types of scenarios in Chapter 5 when we discover how telemetry
pipelines can help meet the needs of risk and compliance .

16 | Chapter2: The Domain Language of Telemetry Pipelines

S3
source

non-500
unmatched

Figure 2-6. Adding a route processor to route only log messages that
include a status of 500 to the Splunk HEC destination

First, you can configure a Splunk HEC destination, and then, to
surface only what you need, you can add a route processor between
the AWS S3 source and the Splunk HEC destination. You then
route only the log traffic that contains a status of 500 to the Splunk
HEC destination, trimming the data to only what you need for the
auditors. However, when you look at the data that is flowing to your
Splunk HEC destination, there are a lot of duplicate events. Those
duplicates are making it harder for the auditors to make sense of
what they are seeing in Splunk, and will cost you money to retain to
boot.

The power of pipelines saves the day again, as shown in Figure 2-7.

Bringing It All Together | 17

S3 —_—
source non-500

unmatched.

Figure 2-7. Deduplicating the stream of 500 status log events to save
space, cost, and the patience of the auditors

A dedupe processor matches any events that meet a certain pattern
within a specified number of sequential events, removing those
events that match as duplicated. By adding a dedupe processor to
your stream between your router and the Splunk HEC destination,
you now surface in Splunk only the necessary deduplicated and
conditioned 500 status events for the auditors to do their work. For
good measure, you can add an Amazon S3 destination to hoover
up, persist, and archive all the unmatched and non-500 status log
messages, ready for the auditors to take away with them for further
analysis if they decide they need to do so.*

4 And, after all, anyone who has worked in a regulated industry will tell you: happy
auditors equal a happy life!

18 | Chapter2: The Domain Language of Telemetry Pipelines

https://oreil.ly/V57VP

CHAPTER 3

Managing Your
Telemetry Pipelines

Quis custodiet ipsos custodes?

(“Who will guard the guards themselves?” or “Who watches the
watchers?”)

—Juvenal

Telemetry pipelines establish control of your flood of telemetry data.
Sources bring your telemetry data into the pipeline, destinations
define where your data should surface, and processors transform,
enrich, and augment that data in all the ways you need to turn the
flood into a useful trickle.

In this chapter, youre going to explore the different forms that
your control can take, from the processors that are your building
blocks to a real use case of pulling together a telemetry pipeline to
condition and route a rich stream of data to your observability tools.

Managing and Debugging Your Pipelines

Developers, engineers, and other system builders are naturally opti-
mists. We have to be; otherwise, we might be paralyzed by the
ramifications of what we build if, or when, it goes wrong. But things
do go wrong. Murphy’s law is real. Thats one of the reasons we
want great telemetry underpinning powerful observability tools in
the first place.

19

https://oreil.ly/4yf4w

But Murphy’s law extends to your telemetry pipelines as well. As
you take full advantage of the multifarious sources at your disposal
and grapple with them using the many processors in your toolkit,
things can and will go wrong, and those slips can be costly. This is
why you need similar techniques when working with your telemetry
pipelines as you do when working with your systems: great debugg-
ability through observability.

Getting a Grip: Ingress and Egress Data Volumes

Raw data in. Conditioned data out. Thats the starting point for
the metrics of interest when it comes to telemetry pipelines. Raw
amounts of data by ingress and egress. Amount in and amount out,
over time.

This blunt instrument provides a starting point for you to build con-
fidence that your pipeline is working as expected, and confidence is
exactly what metrics from your pipeline are trying to exude. Are you
seeing an amount coming into your pipeline that feels comfortably
expected? Is the amount going out unsurprising? Given the costs of
data transfer and residency in various observability tools, that last
question is often crucial. In your telemetry pipelines, your metrics
of interest begin with comparing what comes in to what goes out at
the pipeline level.

Exploring data volumes and metrics at the level of your pipelines
is useful, but what about the broader picture across all your pipe-
lines? That global view is where you are likely to see any worrying
trends where your processors are perhaps not doing quite what you
expected; for example, when you are using downsampling process-
ors where youd expect there to be less globally in egress than in
ingress. Your telemetry pipelines can provide a view across all your
telemetry data ingress and egress, from and to all your types of
sources and destinations, to help you gain confidence that you have
a grip on your data in and data out.

While data volumes may highlight a faux pas of sufficient magni-
tude, they can’t help you debug what is actually going on in your
streams as they are conditioned by your processors. For that you
need a sharper tool: pipeline taps.

20 | Chapter3: Managing Your Telemetry Pipelines

Taking a Peek: Debugging with Pipeline Taps

Figuring out what streams to manipulate and what those manipula-
tions are producing through the many types of processors at your
disposal is no mean feat.! This is where pipeline taps can help.

Pipeline taps are an implementation of the Wire Tap pattern, and
they do exactly what they imply, which is intercept and observe
messages on the fly so that you can get a glimpse of what is going
right or wrong. They provide a window on the data flowing through
your streams so you can simulate, inspect, and debug what your
telemetry pipeline is doing to your telemetry data.

With a couple of taps, you can look at a sample of the data going
in and coming out from one or more of your telemetry pipeline’s
processors. As shown in Figure 3-1, one example is to tap before and
after a route processor to see if your routing logic is pushing the
right traffic toward your destination.

source non-500

unmatched

Figure 3-1. Using pipeline taps to inspect the telemetry events flowing
into and out of the streams from a route processor

1 See Chapter 4 for a sample of the typical processors you can expect to use in your
telemetry pipelines.

Managing and Debugging Your Pipelines | 21

https://oreil.ly/9ln_0

Debugging Your Pipeline

The need for pipeline taps becomes even clearer when you consider
the example of debugging a pipeline that not only pushes data to an
observability tool, but also filters, encrypts, and archives that data
to a persistent storage location. Let’s use the same example earlier
where your 500 status log entries are being routed and deduplica-
ted on the way to a Splunk HEC destination, ready for immediate
perusal by some auditors. At the same time, you're storing all the log
data in a new location in S3, as shown in Figure 3-2.

Deduplicate

Route processor
500
non-500

unmatched

Amazon
S3
source

Figure 3-2. Sourcing log data from S3, routing through only the 500
status log events, and ensuring no duplicates are sent to save space
before ferrying what remains to your Splunk HEC destination

A quick glance at the pipeline dashboard ingress and egress should
confirm that the volumes of data being pushed to Splunk HEC are
well within tolerable levels. That’s a relief, since it is not cheap to
push vast quantities of data to observability tools that can charge by
the byte. (See Chapter 4 for more on cost control.)

The volume looks OK, but is the data of the right form? Adding a
pipeline tap to the stream exiting the deduplicate processor can help

22 | Chapter3: Managing Your Telemetry Pipelines

you build confidence that the right data, and only the right data, is
being popped over to Splunk, as shown in Figure 3-3.

Deduplicate

Route processor
Amazon
3 500

source non-500

unmatched

Figure 3-3. Tapping the stream of output data to build confidence that
only 500 status log events are present and that any duplicates are being
removed before flowing to Splunk HEC

You feel good; everything seems to be working fine. And then the
universe decides to remind you that it doesn’t have your best inter-
ests at heart, as the auditors raise a worrying question: is the data
that’s being directed by the route processor being stored encrypted
at rest? Especially any personally identifiable information (PII)??

A quick tap on the two streams heading to S3 confirms your fears.
There is personal information, and it is not being encrypted. At least
with your pipeline taps you can see that PII data is flowing through
the pipeline, but how are you going to fix that unintended exposure?

It is exactly this sort of case that the encrypt processor is built for.
Adding an encrypt processor to both of those streams can ensure

2 More on this sort of awkward question in Chapter 5, where youw’ll learn how to ensure
that your telemetry is complying with a host of important rules.

Debugging Your Pipeline | 23

https://oreil.ly/Hl8No

that any data item that matches your criteria is effectively encrypted
before storage, as shown in Figure 3-4.

Deduplicate

Route processor
Amazon
3 500

source non-500

unmatched

Figure 3-4. Adding an encrypt processor to the streams of telemetry
data heading to archive on S3, ensuring that any fields that contain
personal information are encrypted before transfer and storage

Nasty problem averted. Thanks to telemetry pipelines, and espe-
cially pipeline taps, you remain on friendly terms with both the
auditors and the regulators!

From Control and Management to
Business Value

In this chapter, you've begun to see the value of telemetry pipelines
as well as how you can then use the pipeline metrics and pipeline
taps to observe, improve, and even debug your telemetry streams
before they get anywhere they shouldn’t. But this is only the begin-
ning. The benefits of telemetry pipelines go beyond data control and
into saving money.

24 | Chapter3: Managing Your Telemetry Pipelines

CHAPTER 4
Containing the Cost

“Show me the money!”

—Jerry Maguire

Volume is the problem, but not just because it is hard to navigate
and work with. Data, especially in the cloud, costs money. Some-
times lots of money. If a potential $65 million bill doesn't scare you,
then your organization is doing exceptionally well. For the rest of us,
cost really matters.

Processors Are the Key

In Chapters 2 and 3, you got a glimpse of how telemetry pipelines
can help with cost. Some key processors that can help you control
cost are deduplicate, route, reduce, sample, filter, and conversion
processors.

Deduplicate Where You Can

When it comes to cost, the deduplicate processor is your brutally
simple friend. By applying some simple logic, the deduplicate pro-
cessor can reduce your telemetry data streams significantly without
losing any data. This is why the first step for designing a telemetry
pipeline must include first getting an understanding of your data, so
you can effectively determine which processor to use to target your
data components.

25

https://oreil.ly/Jkhjd

Choose Your Route Carefully

At the simplest end of the scale, you can merely choose where your
telemetry data goes. If you want to optimize your spend on Splunk,
you can ensure that only the data necessary for Splunk is routed to
it. The remaining data could be routed to low-cost storage, such as
S3, so that nothing is lost just in case. It’s that simple, sort of.

The art here is to ensure that you are still routing something useful
to your destinations. A router might not give you the right level
of intelligence to create a stream that is ultimately useful to your
tooling destinations. You could end up paying for a first-class tool
that is utterly hamstrung by third-class data.

As always, and with all of the cost-strategy processors, it's going to
be a trade-off, but at least you get to make that trade-off in your
telemetry pipelines.

Reduce, Sample, or Filter It Down (Carefully)

Sampling and filtering loses data.... Say it with me: sampling and
filtering by definition loses data. That sounds bad, and it is; however,
sampling and filtering can still be used with care when you really
have to. The good news is that a telemetry pipeline gives you the
choice to sample or filter your data if you need to before the stream
hits an expensive destination.

Downsampling or selectively filtering your telemetry data using a
sample or filter processor will reduce the number of events you see
in the resulting stream.! For example, a simple sampling strategy
is to ignore every second event; this is called 1/2 sampling. Only
sending every third event is 1/3 sampling. This type of sampler
is very common and is, for perhaps obvious reasons, called a 1/n
sample processor.

You can also configure a 1/n sample processor to ignore the sam-
pling if an event matches a particular pattern. To prevent dropping
those crucial events amid the noise, you can configure a sample
processor to notice the events and let them through with no down-
sampling applied.

1 See “Adding Processors” on page 13 for a short description of these processors.

26 | Chapter4:Containing the Cost

Sampling can be extremely helpful with keeping control of the flood
of data, particularly where specific events are less useful and a broad
brush is all that is needed. But you have to use it carefully and
get those exception cases configured so that you don’t accidentally
sample out the one important piece of information that you need.

Filtering is more controlled. With a filter processor, you are looking
for events that match a specific set of criteria so that, when they
match, they can be dropped. You can filter out whole events or just
drop single fields, reducing the data in the stream and lowering
costs at any of your destinations.

In an ideal world, which none of us live in, we wouldn't sample or
filter at all other than to improve the condition of the events using
something gentle like deduplication. There is, however, a get-out-of-
jail-free card available with telemetry pipelines. If you route your
telemetry data before your sampler to an archive—something much
cheaper than a full observability tool destination, such as S3—then
you can persist a record of the raw data. That repository becomes
an asset should you ever need to suck up the cost and bring that
data back into your observability tools.? It’s not perfect, but it gives
you options you would not have had without a telemetry pipeline at
your disposal.

Converting Events or Logs to Metrics

Another useful technique to reduce data volumes and increase
insights is converting logs to metrics. Logs are inherently unstruc-
tured and voluminous, but you can derive metric data from logs
by parsing the log data to extract specific information and then use
that information to create metrics. Or you can count specific events
within the log data and use that count to create a metric.

As an example, by identifying a specific value within a log message,
such as the time it took to serve a request, you can create a new
metric. Now you can use this distilled information for your analysis
in security information and event management (SIEM) or for visu-
alization in tools like Grafana. This not only reduces the log volume,
but also helps extract business insights.

2 Retention management is often built into cloud storage, such as S3 lifecycle policies.

Processors Arethe Key | 27

https://oreil.ly/Q5K7J

Cost, Controlled

By carefully using route, deduplicate, reduce, sample, filter, and
conversion processors, you can at least control how much of your
telemetry data ends up where. You can also choose to park your
data in locations, such as S3, that can be cheap options for storage
and, through telemetry pipelines, can be easily reborn into streams
for processing and channeling in the future. It’s with this choice
and flexibility that telemetry pipelines really help you shine when
managing the cost of your observability.

But in addition to cost, there is one other challenge with telemetry
data that we've only hinted at so far. The elephant in the room. Data
isn’t just about cost, it’s about control. Serious control. Serious go-
to-jail-if-you-get-it-wrong consequences. We are, of course, talking
about compliance.

By extracting metrics from raw events and log data, you can discern
more value from your telemetry data assets and see where your
money is being spent on effective ingress and egress of that data.
And this is only the beginning.

The visibility and control your telemetry pipelines give you can help
you deliver better business insights and even improve your security
posture by making sure the right data is sent to your security tools at
the right time. You can accelerate resolution times and improve cus-
tomer experience as well as help ensure that you meet all required
data compliance regulations. Next, it’s time to explore that specific
case. Risk and compliance, anyone?

28 | Chapter4: Containing the Cost

CHAPTER 5
Embracing Compliance

Finance is about the money you make. Compliance is about the money
you keep.

—Anonymous

In Chapter 4, I imagine we all universally agreed that $65 million is
a lot of money. As the amount of one single observability bill, it feels
a bit much. Well, in this chapter the stakes are raised just a touch
higher. Millions are for lightweights. Lets talk about billions: $30.6
billion, to be in the approximate ballpark. Give or take a few million.

Fines for financial services noncompliance have reached as high as
$30.6 billion in some extreme cases. Admittedly, this was for a host
of irregularities ranging from misdemeanors to out-and-out fraud
and enabling money laundering on an industrial scale, and so not
necessarily what you can expect from mishandling your telemetry
data.

But that’s just financial noncompliance. What about health care data
compliance, like HIPAA? For those hoping to operate in Europe,
what about General Data Protection Regulation (GDPR)?

Whatever business you're in, there is likely a reasonable expectation
that you will comply with various rules and regulations. Even if
youre a small service provider just trying to obey local restrictions
around how you safely handle PII, there are rules.

And observability tools hate rules. Limiting data access to specific
individuals, ensuring that data is anonymized, ensuring that data
can be processed and dropped if necessary—all of these things

29

https://oreil.ly/Xr1zn
https://oreil.ly/Xr1zn
https://oreil.ly/9H71r
https://gdpr-info.eu

give creators of observability tools nightmares. Great observability
thrives on breaking down barriers, aiming to establish a free envi-
ronment where open questions can be asked about any current and
historical condition within your systems. Asking that your observa-
bility tools and practices can audit all access, limit the proliferation
of information, and ensure that all PII is removed is not just tricky—
it can be anathema to your observability goals.

Luckily, you have telemetry pipelines. Observability tools hate rules,
but telemetry pipelines love them.

The Key Is Processors, Once Again!

By now, you'll likely be seeing the form. Bringing your telemetry
data flood into your telemetry pipelines gives you the visibility and
control to work with that data and condition it to the restrictions of
any sets of compliance rules you are looking to comply with.

The tools remain the same, even if their importance escalates. The
key processors for helping you ensure that your telemetry data is
obeying compliance rules are the route, redact, and encrypt process-
ors. Let’s look at how these come into play for a specific type of
compliance: GDPR.

The Case of Conformance to GDPR

GDPR is an acronym that, when it came into European law, sparked
fear in providers around the globe. It applied to anyone trying to
operate a service in Europe; you didn’t have to exist there to be sub-
jected to it—you just had to trade in Europe. If your service’s fingers
were on European Union citizen data without following GDPR, you
could expect a fine of up to 20 million Euros or 4% of your annual
global turnover. Not $30-plus billion, but still a dent in the reported
quarterly earnings.

The problem you face is that your logs probably contain the kind
of personal data that GDPR tries to protect European citizens’ rights
to. Even if you just run a simple web service, you likely log user’s IP
addresses, the URLs they tried to request, their usernames, perhaps
even their complete records on your system in the event of a failure
(for debugging purposes, of course). This data is helpful, but it’s also
covered under the rights protected by GDPR.

30 | Chapter5: Embracing Compliance

While observability tools may shrug in the face of this problem, tele-
metry pipelines can have your back. Using route, encrypt, and filter
processors, you can reduce your telemetry data in transit and at rest,
potentially filtering out or pseudonymizing personal information.

What Happens When You Pseudonymize User Data?

Pseudonymization replaces PII with nonidentifying data that can
still be used to recognize a person. As an example, a set of data in
your telemetry might contain the details of John Doe, including his
address and credit card information. After pseudonymization, the
system will still know that the data pertains to a person, but it won't
be able to tell the person is John Doe specifically.

Helping with Compliance: Another Telemetry
Pipeline Payoff

Earlier, I told a white lie. While processors are the keys to actually
implementing the steps necessary to be compliant with various reg-
ulations, it is the pipeline itself that is the real magic.

The fact that you can explore, condition, and control your streams
of telemetry data makes it much more possible to enforce compli-
ance rules on that data. While it’s achievable to be compliant without
telemetry pipelines, it’s far from as easy or as clearly audited.

Helping with Compliance: Another Telemetry Pipeline Payoff | 31

CHAPTER 6
Conclusion

Railroad iron is a magician’s rod in its power to evoke the sleeping
energies of land and water.

—Ralph Waldo Emerson

On the face of it, telemetry pipelines dont sound like they will
change your world, but like the railroads in Ralph Waldo Emerson’s
quote, there’s an enormous amount of power in their simplicity.
From just the four building blocks of sources, streams, processors,
and destinations, you can build pipelines that can help you solve
problems more quickly, save your organization money, or even
avoid huge compliance fines. And those are just the cases we've had
time to cover here.

When you invest the time necessary to look at and think differently
about your telemetry data, you can start to treat it as the valua-
ble resource it really is. No longer is it merely a peripheral side
effect; your telemetry data—metrics, traces, logs, and other events
like alerts—is transformed into something visualizable, manageable,
and, most importantly, valuable.

You get to streamline what gets through to your various live observ-
ability downstream tools, hedging your bets by storing anything
you don’t think you'll need today in a cheap backup location. Then
the world opens up to deliver better business insights, improve
your security posture, accelerate incident resolution times, improve
customer experience, and, as described in the previous chapter, even
ensure that you meet all required data compliance regulations. And
all of that is likely just scratching the surface.

33

When you shift your thinking through using telemetry pipelines,
the flood of telemetry data morphs from an overwhelming problem
into an unmined opportunity. You shift from “Can I handle all this?”
to “I can make this my own.” Telemetry pipelines put you in control
of your telemetry. Use that power wisely.

34 | Chapter6: Conclusion

About the Authors

Russ Miles is a people, team, and organizational developer; writer;
psychologist; speaker; and humanistic engineering lead/manager.

Kai Alvason holds a PhD in comparative literature and has been
a member of the faculty at the University of Virginia and Towson
State University. They have held roles in technical writing and edit-
ing, information architecture, content strategy, and technical educa-
tion at major enterprises like Dell and Amazon, and currently lead
technical communications at Mezmo.

	Cover
	Mezmo
	Copyright
	Table of Contents
	Preface
	Chapter 1. The Need for Telemetry Pipelines
	Taming the Data Flood
	The Incremental Value Chain
	Understand, Optimize, Respond
	An Example Pipeline

	Chapter 2. The Domain Language of Telemetry Pipelines
	The Building Blocks of Telemetry Pipelines
	Starting at the Source
	What’s the Destination?
	Do Cross the Streams: From Sources to Destinations
	Adding Processors

	Bringing It All Together

	Chapter 3. Managing Your Telemetry Pipelines
	Managing and Debugging Your Pipelines
	Getting a Grip: Ingress and Egress Data Volumes
	Taking a Peek: Debugging with Pipeline Taps

	Debugging Your Pipeline
	From Control and Management to Business Value

	Chapter 4. Containing the Cost
	Processors Are the Key
	Deduplicate Where You Can
	Choose Your Route Carefully
	Reduce, Sample, or Filter It Down (Carefully)
	Converting Events or Logs to Metrics

	Cost, Controlled

	Chapter 5. Embracing Compliance
	The Key Is Processors, Once Again!
	The Case of Conformance to GDPR
	Helping with Compliance: Another Telemetry Pipeline Payoff

	Chapter 6. Conclusion
	About the Authors

